期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度特征Transformer的细粒度图像分类方法
被引量:
2
1
作者
张天魁
蔡昌利
+1 位作者
骆晓亮
朱禹涛
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2023年第4期70-75,共6页
针对细粒度图像分类任务的长尾分布问题,提出了一种基于多尺度特征Transformer的细粒度图像分类方法,实现了底层与深层特征的保护并优化了长尾分布。首先,设计了混合数据采样方法,获取用于优化表征学习、长尾分布和细粒度特征的三元组数...
针对细粒度图像分类任务的长尾分布问题,提出了一种基于多尺度特征Transformer的细粒度图像分类方法,实现了底层与深层特征的保护并优化了长尾分布。首先,设计了混合数据采样方法,获取用于优化表征学习、长尾分布和细粒度特征的三元组数据;然后,设计了Transformer多尺度特征优化方法,分别通过底层特征对比学习方法与深层特征平衡学习方法优化特征学习过程,改善类别混淆和细粒度特征的提取,在保护头部类别特征学习的同时增加对尾部类别的关注。仿真结果表明,所提方法可以有效地改善细粒度图像分类任务中长尾分布带来的影响,优化特征分布,提高分类准确率。
展开更多
关键词
TRANSFORMER
细粒度图像分类
细粒度特征
长尾分布
原文传递
题名
基于多尺度特征Transformer的细粒度图像分类方法
被引量:
2
1
作者
张天魁
蔡昌利
骆晓亮
朱禹涛
机构
北京邮电大学信息与通信工程学院
中
移
(
江西
)
虚拟现实
科技
有限公司
金砖国家未来网络研究院
中
国分院
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2023年第4期70-75,共6页
基金
江西省科技厅重大科技研发专项项目(20213AAE01007)。
文摘
针对细粒度图像分类任务的长尾分布问题,提出了一种基于多尺度特征Transformer的细粒度图像分类方法,实现了底层与深层特征的保护并优化了长尾分布。首先,设计了混合数据采样方法,获取用于优化表征学习、长尾分布和细粒度特征的三元组数据;然后,设计了Transformer多尺度特征优化方法,分别通过底层特征对比学习方法与深层特征平衡学习方法优化特征学习过程,改善类别混淆和细粒度特征的提取,在保护头部类别特征学习的同时增加对尾部类别的关注。仿真结果表明,所提方法可以有效地改善细粒度图像分类任务中长尾分布带来的影响,优化特征分布,提高分类准确率。
关键词
TRANSFORMER
细粒度图像分类
细粒度特征
长尾分布
Keywords
Transformer
fine-grained image classification
fine-grained feature
long-tail distribution
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于多尺度特征Transformer的细粒度图像分类方法
张天魁
蔡昌利
骆晓亮
朱禹涛
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2023
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部