目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊...目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 d B、0.28 d B、0.16 d B。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。展开更多
图像分类是图像理解的基础,对计算机视觉在实际中的应用具有重要作用。然而由于图像目标形态、类型的多样性以及成像环境的复杂性,导致很多图像分类方法在实际应用中的分类结果总是差强人意,例如依然存在分类准确性低、假阳性高等问题,...图像分类是图像理解的基础,对计算机视觉在实际中的应用具有重要作用。然而由于图像目标形态、类型的多样性以及成像环境的复杂性,导致很多图像分类方法在实际应用中的分类结果总是差强人意,例如依然存在分类准确性低、假阳性高等问题,严重影响其在后续图像及计算机视觉相关任务中的应用。因此,如何通过后期算法提高图像分类的精度和准确性具有重要研究意义,受到越来越多的关注。随着深度学习技术的快速发展及其在图像处理中的广泛应用和优异表现,基于深度学习技术的图像分类方法研究取得了巨大进展。为了更加全面地对现有方法进行研究,紧跟最新研究进展,本文对Transformer驱动的深度学习图像分类方法和模型进行系统梳理和总结。与已有主题相似综述不同,本文重点对Transformer变体驱动的深度学习图像分类方法和模型进行归纳和总结,包括基于可扩展位置编码的Transformer图像分类方法、具有低复杂度和低计算代价的Transformer图像分类方法、局部信息与全局信息融合的Transformer图像分类方法以及基于深层ViT(visual Transformer)模型的图像分类方法等,从设计思路、结构特点和存在问题等多个维度、多个层面深度分析总结现有方法。为了更好地对不同方法进行比较分析,在ImageNet、CIFAR-10(Canadian Institute for Advanced Research)和CIFAR-100等公开图像分类数据集上,采用准确率、参数量、浮点运算数(floating point operations,FLOPs)、总体分类精度(overall accuracy,OA)、平均分类精度(average accuracy,AA)和Kappa(κ)系数等评价指标,对不同方法模型的分类性能进行了实验评估。最后,对未来研究方向进行了展望。展开更多
目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,...目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成。方法采用提出的色彩恢复子网(sand dust color correction,SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理。本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集。结果对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像。进一步的对比实验表明,该方法能取得优于对比方法的增强图像。结论本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像。展开更多
文摘目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 d B、0.28 d B、0.16 d B。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。
文摘图像分类是图像理解的基础,对计算机视觉在实际中的应用具有重要作用。然而由于图像目标形态、类型的多样性以及成像环境的复杂性,导致很多图像分类方法在实际应用中的分类结果总是差强人意,例如依然存在分类准确性低、假阳性高等问题,严重影响其在后续图像及计算机视觉相关任务中的应用。因此,如何通过后期算法提高图像分类的精度和准确性具有重要研究意义,受到越来越多的关注。随着深度学习技术的快速发展及其在图像处理中的广泛应用和优异表现,基于深度学习技术的图像分类方法研究取得了巨大进展。为了更加全面地对现有方法进行研究,紧跟最新研究进展,本文对Transformer驱动的深度学习图像分类方法和模型进行系统梳理和总结。与已有主题相似综述不同,本文重点对Transformer变体驱动的深度学习图像分类方法和模型进行归纳和总结,包括基于可扩展位置编码的Transformer图像分类方法、具有低复杂度和低计算代价的Transformer图像分类方法、局部信息与全局信息融合的Transformer图像分类方法以及基于深层ViT(visual Transformer)模型的图像分类方法等,从设计思路、结构特点和存在问题等多个维度、多个层面深度分析总结现有方法。为了更好地对不同方法进行比较分析,在ImageNet、CIFAR-10(Canadian Institute for Advanced Research)和CIFAR-100等公开图像分类数据集上,采用准确率、参数量、浮点运算数(floating point operations,FLOPs)、总体分类精度(overall accuracy,OA)、平均分类精度(average accuracy,AA)和Kappa(κ)系数等评价指标,对不同方法模型的分类性能进行了实验评估。最后,对未来研究方向进行了展望。
文摘目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成。方法采用提出的色彩恢复子网(sand dust color correction,SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理。本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集。结果对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像。进一步的对比实验表明,该方法能取得优于对比方法的增强图像。结论本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像。