Fish immunology has achieved great progress in recent years. While before 1990s, most researches focused on the fish systematic immunity, and the mucosal immunity of fish had not been given enough attention. Indeed, i...Fish immunology has achieved great progress in recent years. While before 1990s, most researches focused on the fish systematic immunity, and the mucosal immunity of fish had not been given enough attention. Indeed, it has been shown that fish mucosal immunity plays an important role in disease defense. Fish mucosal immunity research has made some exciting progress in this decade. This review will focus on such progress: Constitution of mucosal-associated tissues and distribution of different immune cells, including T/B lymphocytes, granules, monocytes, macrophages, goblet cells, etc, in these sites have been well described with the development of some monoclonal antibody to these cells and associated techniques. Non-specific immune response mechanism of mucosal tissues reported these years, such as secretion of non-specific anti-bacteria and anti-fungi substances in mucus, the respiratory burst, enzyme activity of immune cells and so on, is believed important for fish disease defense. The specific immunity of mucosal tissues also attracts much interest and makes great achievement in antigen presenting, MHC genes, antibody producing and antibody secreting cells, comparison of serum and mucus immunoglobulin, relationships of immune response between different mucosal immune tissues. Whether mucosal immune system is independent of systematic immune system is another interesting question and causes great concern. In recent years, some evidences from phyletic evolution and ontogenesis show that mucosal immunity is prior to systematic immunity in evolution. Dynamics of antibody producing of mucosal tissues and serum in immersion or oral vaccines immunized fish also shows immune response can be elicited in mucosal tissues independent of systematic immune system. Some researchers also begin to pay attention to factors involved in mucosal immune regulations, for instance, neuromodulators and cytokines. The level of these factors changes in fish immune response process but the mechanisms of regulation still remain unknown.展开更多
文摘对斜带石斑鱼(Epinephelus coioides)的胚胎及仔稚幼鱼形态发育进行了观察与研究,详细描述从受精卵到初孵仔鱼的28个具体发育时期的形态特征和发育时间。根据研究观察结果,将斜带石斑鱼胚胎发育划分为卵裂期、囊胚期、原肠胚期、神经胚期和器官形成期。在水温(25±0.5)℃、盐度31.0、pH7.8的海水中,斜带石斑鱼胚胎历时28 h 30 min完成整个胚胎发育孵化出膜。胚后发育主要根据卵黄囊、腹鳍棘及第二背鳍棘、鳞片、体色的变化分为仔鱼期、稚鱼期、幼鱼期。仔鱼期根据卵黄囊的有无又分为早期仔鱼和晚期仔鱼。在水温24.5~29.2℃,盐度28.8~33.5,pH7.5~8.5的海水中,培育至36d,发育最快的斜带石斑鱼结束仔鱼期进入稚鱼期;培育至42d,发育最快的稚鱼完成变态,成为幼鱼。斜带石斑鱼胚后发育过程中最明显的变化是腹鳍棘与第二背鳍棘以及鳍棘上小刺的长出与收回。
文摘Fish immunology has achieved great progress in recent years. While before 1990s, most researches focused on the fish systematic immunity, and the mucosal immunity of fish had not been given enough attention. Indeed, it has been shown that fish mucosal immunity plays an important role in disease defense. Fish mucosal immunity research has made some exciting progress in this decade. This review will focus on such progress: Constitution of mucosal-associated tissues and distribution of different immune cells, including T/B lymphocytes, granules, monocytes, macrophages, goblet cells, etc, in these sites have been well described with the development of some monoclonal antibody to these cells and associated techniques. Non-specific immune response mechanism of mucosal tissues reported these years, such as secretion of non-specific anti-bacteria and anti-fungi substances in mucus, the respiratory burst, enzyme activity of immune cells and so on, is believed important for fish disease defense. The specific immunity of mucosal tissues also attracts much interest and makes great achievement in antigen presenting, MHC genes, antibody producing and antibody secreting cells, comparison of serum and mucus immunoglobulin, relationships of immune response between different mucosal immune tissues. Whether mucosal immune system is independent of systematic immune system is another interesting question and causes great concern. In recent years, some evidences from phyletic evolution and ontogenesis show that mucosal immunity is prior to systematic immunity in evolution. Dynamics of antibody producing of mucosal tissues and serum in immersion or oral vaccines immunized fish also shows immune response can be elicited in mucosal tissues independent of systematic immune system. Some researchers also begin to pay attention to factors involved in mucosal immune regulations, for instance, neuromodulators and cytokines. The level of these factors changes in fish immune response process but the mechanisms of regulation still remain unknown.