针对微管类(直径0~300μm)零件的夹持需求,基于有限元分析设计了一种非对称式压电驱动的微夹持器.该微夹持器采用柔性铰链实现压电陶瓷输出位移的传递和放大.采用平行四杆机构实现夹钳末端的平行移动.通过检测柔性铰链处应变的方法,...针对微管类(直径0~300μm)零件的夹持需求,基于有限元分析设计了一种非对称式压电驱动的微夹持器.该微夹持器采用柔性铰链实现压电陶瓷输出位移的传递和放大.采用平行四杆机构实现夹钳末端的平行移动.通过检测柔性铰链处应变的方法,间接地测量夹持力和位移信息.微夹持器的实验特性显示位移的放大倍率为5.6倍,夹持器末端夹钳可以实现平行移动.力和位移标定实验中显示夹持力的分辨力在2.41 m N,位移的分辨力在0.22μm,且力/位移与应变具有很好的线性关系.采用增量式PID的控制算法对系统进行力/位移的闭环控制.以微型玻璃管(直径150μm)夹持为例,系统的阶跃响应实验显示,系统的力/位移控制可以实现无超调.实验结果表明增量式PID控制算法可以实现对本微夹持器力/位移的准确、稳定控制.展开更多
文摘针对微管类(直径0~300μm)零件的夹持需求,基于有限元分析设计了一种非对称式压电驱动的微夹持器.该微夹持器采用柔性铰链实现压电陶瓷输出位移的传递和放大.采用平行四杆机构实现夹钳末端的平行移动.通过检测柔性铰链处应变的方法,间接地测量夹持力和位移信息.微夹持器的实验特性显示位移的放大倍率为5.6倍,夹持器末端夹钳可以实现平行移动.力和位移标定实验中显示夹持力的分辨力在2.41 m N,位移的分辨力在0.22μm,且力/位移与应变具有很好的线性关系.采用增量式PID的控制算法对系统进行力/位移的闭环控制.以微型玻璃管(直径150μm)夹持为例,系统的阶跃响应实验显示,系统的力/位移控制可以实现无超调.实验结果表明增量式PID控制算法可以实现对本微夹持器力/位移的准确、稳定控制.