Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
To extract the symmetric axis o{ rigid target accurately, a symmetric axis detection method is proposed based on Hough algorithm. A bullet is selected as a research object. Firstly, the original image is collected and...To extract the symmetric axis o{ rigid target accurately, a symmetric axis detection method is proposed based on Hough algorithm. A bullet is selected as a research object. Firstly, the original image is collected and the characteristics of the target image are analyzed. Because the symmetric axis detection depends on the edge detection of the image, it is necessary to use relevant operators to detect the edge and get all possible edge points. Secondly, all possible symmetric axes related to all contour points acquired are determined by Hough transform, and all possible inclination angles and intercepts and their ranges are obtained. Finally, by using least squares method, when the distance between the symmetric points of the contour points from the one edge and the contour points from the other edge is the minimum, the optimal symmetric axis is got. Simulation resuits show that the proposed method can improve noise-resistance and precision of symmetric axis detection and has certain practical value.展开更多
The conventional X-ray gray weighted image fusion method based on variable energy cannot characterize the phys- ical properties of complicated objects correctly, therefore, the gray correction method of X-ray fusion i...The conventional X-ray gray weighted image fusion method based on variable energy cannot characterize the phys- ical properties of complicated objects correctly, therefore, the gray correction method of X-ray fusion image based on neural network is proposed. The conventional method acquires 12 bit images on variable energy, and then fuses the images in a tra- ditional way. While the new method takes the fusion image as the input of neural network simulation system and takes the acquired 16 bit image as the output of neural network. The X-ray image physical characteristic model based on neural net- work is obtained through training. And then it takes steel ladder block as the test object to verify the feasibility of the mod- el. In the end, the gray curve of output image is compared with the gray curve of 16 bit real image. The experiment results show that this method can fit the nonlinear relationship between the fusion image and the real image, and also can expand the scope of application of low dynamic image acquisition equipment.展开更多
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
基金National Natural Science Foundation of China(No.61171179,No.61227003)
文摘To extract the symmetric axis o{ rigid target accurately, a symmetric axis detection method is proposed based on Hough algorithm. A bullet is selected as a research object. Firstly, the original image is collected and the characteristics of the target image are analyzed. Because the symmetric axis detection depends on the edge detection of the image, it is necessary to use relevant operators to detect the edge and get all possible edge points. Secondly, all possible symmetric axes related to all contour points acquired are determined by Hough transform, and all possible inclination angles and intercepts and their ranges are obtained. Finally, by using least squares method, when the distance between the symmetric points of the contour points from the one edge and the contour points from the other edge is the minimum, the optimal symmetric axis is got. Simulation resuits show that the proposed method can improve noise-resistance and precision of symmetric axis detection and has certain practical value.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘The conventional X-ray gray weighted image fusion method based on variable energy cannot characterize the phys- ical properties of complicated objects correctly, therefore, the gray correction method of X-ray fusion image based on neural network is proposed. The conventional method acquires 12 bit images on variable energy, and then fuses the images in a tra- ditional way. While the new method takes the fusion image as the input of neural network simulation system and takes the acquired 16 bit image as the output of neural network. The X-ray image physical characteristic model based on neural net- work is obtained through training. And then it takes steel ladder block as the test object to verify the feasibility of the mod- el. In the end, the gray curve of output image is compared with the gray curve of 16 bit real image. The experiment results show that this method can fit the nonlinear relationship between the fusion image and the real image, and also can expand the scope of application of low dynamic image acquisition equipment.