To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidl...To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years.展开更多
An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting usi...An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting using special probe demonstrated that there existed one copy of Lhcb 2 in pea genome. RT_PCR and Northern blotting revealed the expression of Lhcb 2 which was regulated by light in a time_dependent expression manner. The Lhcb 2 gene didn't express untill 2 h after irradiated with white light. Low temperature (4 ℃) also affected the Lhcb 2 gene by decreasing half of its expression under 25 ℃.展开更多
文摘To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years.
文摘An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting using special probe demonstrated that there existed one copy of Lhcb 2 in pea genome. RT_PCR and Northern blotting revealed the expression of Lhcb 2 which was regulated by light in a time_dependent expression manner. The Lhcb 2 gene didn't express untill 2 h after irradiated with white light. Low temperature (4 ℃) also affected the Lhcb 2 gene by decreasing half of its expression under 25 ℃.