在众核平台上并行加速是解决高效视频编码(high efficiency video coding,HEVC)标准编码复杂度高的有效方法.传统的粗粒度并行方案如Tiles和WPP未能在并行度和编码质量之间取得较好的平衡,对编码质量影响较大或者并行度不高.充分挖掘HEV...在众核平台上并行加速是解决高效视频编码(high efficiency video coding,HEVC)标准编码复杂度高的有效方法.传统的粗粒度并行方案如Tiles和WPP未能在并行度和编码质量之间取得较好的平衡,对编码质量影响较大或者并行度不高.充分挖掘HEVC帧内模式选择中的并行性,提出了一种在CTU内使用的多层次细粒度的帧内模式选择算法.具体说来,对帧内模式选择过程进行了子任务划分,分析并消除了相邻编码块之间多种阻碍并行计算的数据依赖关系,包括帧内预测参考像素依赖、预测模式依赖和熵编码依赖等,实现了同一个CTU内所有层次的细粒度编码块的代价计算和模式选择并行进行.将算法在Tile-Gx36平台上实现,实验结果表明此并行算法与HEVC参考代码HM相比能获得18倍的整体编码加速比而且编码质量损失较小(码率上升3%).展开更多
文摘在众核平台上并行加速是解决高效视频编码(high efficiency video coding,HEVC)标准编码复杂度高的有效方法.传统的粗粒度并行方案如Tiles和WPP未能在并行度和编码质量之间取得较好的平衡,对编码质量影响较大或者并行度不高.充分挖掘HEVC帧内模式选择中的并行性,提出了一种在CTU内使用的多层次细粒度的帧内模式选择算法.具体说来,对帧内模式选择过程进行了子任务划分,分析并消除了相邻编码块之间多种阻碍并行计算的数据依赖关系,包括帧内预测参考像素依赖、预测模式依赖和熵编码依赖等,实现了同一个CTU内所有层次的细粒度编码块的代价计算和模式选择并行进行.将算法在Tile-Gx36平台上实现,实验结果表明此并行算法与HEVC参考代码HM相比能获得18倍的整体编码加速比而且编码质量损失较小(码率上升3%).