2015年7月15日00:00至20日00:00(协调世界时,下同)期间,京津冀地区每天傍晚均有明显雷阵雨天气过程发生,持续约一周时间。天气形势分析发现:虽然都是傍晚到夜间出现雷雨天气,但15~17日的雷雨过程,500 h Pa主要表现为两槽一脊天气形势,...2015年7月15日00:00至20日00:00(协调世界时,下同)期间,京津冀地区每天傍晚均有明显雷阵雨天气过程发生,持续约一周时间。天气形势分析发现:虽然都是傍晚到夜间出现雷雨天气,但15~17日的雷雨过程,500 h Pa主要表现为两槽一脊天气形势,京津冀地区处于低槽前部的不稳定区。18~19日两天,京津冀地区西部为低槽,东部为副热带高压(副高),主要表现为西低东高的天气形势,是华北地区典型的暴雨天气型之一。15~17日与18~19日的水汽输送路径也有明显区别,15~17日以西南暖湿气流直接向东北方向输送以及台风外围偏东风气流向京津冀输送水汽为主,18~19日则为西南暖湿气流向东北方向直接输送到东海以东洋面后转为偏东风向京津冀输送为主,但是,水汽辐合中心均出现在京津冀附近,且水汽通量及辐合总是在12:00大于00:00,意味着傍晚的水汽条件好于白天。动力条件方面,整个降水期间,京津冀区域的对流层高层均处于南亚高压外围辐散区,低层辐合层次主要集中在700 h Pa以下,近地面层12:00的辐合更为剧烈,中层均有干冷偏西气流下沉后与低层暖湿偏东气流辐合抬升,12:00的干冷气流下沉层次更低,与偏东风的辐合更强。温度层结方面,京津冀区域平均的气温垂直温差在800 h Pa以下总是12:00高于00:00。降水期间,上升速度在中高层均表现为00:00大于12:00,但是低层的上升速度都是12:00强于00:00,傍晚的动力和水汽条件都更利于降水发生。展开更多
本文利用欧洲中心ERA-Interim和NOAA的再分析资料并应用拉格朗日后向轨迹追踪的方法对2015年5月24日发生在南疆的一次强降水过程进行了动力诊断和水汽特征分析。结果表明此次强降水过程的直接影响系统是中亚低涡前西南气流中发展的小槽...本文利用欧洲中心ERA-Interim和NOAA的再分析资料并应用拉格朗日后向轨迹追踪的方法对2015年5月24日发生在南疆的一次强降水过程进行了动力诊断和水汽特征分析。结果表明此次强降水过程的直接影响系统是中亚低涡前西南气流中发展的小槽,南北两支高空急流辐散场叠加引发的对流层高层加剧的抽吸作用和高低空急流的耦合作用共同导致了深厚强烈的上升运动,是这次强降水主要的动力抬升机制。TBB(black body temperature)的演变与降水的发生、发展有很好的对应关系,TBB中心降至-50°C以下时降水开始且随其中心强度的扩大降水也持续加强。进一步诊断发现,低层850 h Pa对流涡度矢量(CVV)垂直分量的正值中心在降水前6~12小时已可以大致体现未来强降水的落区。此次南疆盆地强降水的水汽主要源于黑海和里海,低空急流引导了一部分水汽进入南疆,HYSPLIT模式后向追踪的结果表明,此次强降水过程主要有两条水汽通道,均源于新疆以西的欧亚大陆但输送路径有所差异,偏西路径和转向路径分别主要输送800 hPa以上和以下的水汽,降水发生前两条路径在垂直方向上均有明显抬升,水汽辐合有利于暴雨的形成。展开更多
利用NCEP/NCAR(美国国家环境预报中心/国家大气研究中心)的全球预报系统(GFS)再分析资料、欧洲气象中心(ERA-interim)资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演降水资料,对2014年第10号台风Matmo生成后西北行并登陆...利用NCEP/NCAR(美国国家环境预报中心/国家大气研究中心)的全球预报系统(GFS)再分析资料、欧洲气象中心(ERA-interim)资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演降水资料,对2014年第10号台风Matmo生成后西北行并登陆台湾及福建过程中的特征进行了分析,揭示出Matmo移动路径主要受西太平洋副热带高压(简称西太副高)外围引导气流影响。动、热力物理量场分析表明,Matmo在登陆福建前后,福建上空一直维持深厚的涡旋结构,福建东南部上空的上升区与台湾海峡及福建西部附近的下沉运动区形成明显的垂直环流圈。同时,南海上空有明显的西南急流(风速大于16 m s^(-1)),Matmo的水汽来源主要有两条,分别为孟加拉湾和南海以及西太副高南侧。充足的水汽输送及低层水汽辐合抬升有利于Matmo登陆后的强降水发生和维持。Matmo登陆福建后仍然保持低层辐合、高层辐散,有利于持续暴雨的发生。Matmo登陆福建期间始终处于风速垂直切变小值区(小于9 m s^(-1))中,环境风速的弱垂直切变有利于Matmo暖心结构及高空辐散形势的维持,是Matmo在登陆后依然能维持自身强度不衰减的原因之一。展开更多
基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分...基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。展开更多
本文以ERA5(ECMWF Reanalysis v5)再分析资料为初始场,利用WRF(The Weather Research and Forecasting)模式对2020年4月19~20日的一次大范围暴雪天气过程进行数值模拟研究。模式采用不同云微物理参数化方案进行敏感性试验,并与实测数据...本文以ERA5(ECMWF Reanalysis v5)再分析资料为初始场,利用WRF(The Weather Research and Forecasting)模式对2020年4月19~20日的一次大范围暴雪天气过程进行数值模拟研究。模式采用不同云微物理参数化方案进行敏感性试验,并与实测数据(自动站降水数据、雷达基数据)进行对比,分析了此次暴雪天气过程不同阶段的降水、雷达反射率、动热力和水凝物的时空演变和三维细致结构特征。研究表明:Morrison方案更好的模拟出了本次暴雪天气过程,表现在模拟的雷达回波强度、范围及形态更与实况一致,模拟出的降水量的相关系数和均方根误差都优于其他方案;其微物理细致结构表现为强上升运动和低层正涡度的长时间维持,以及7 km以上高层较多的冰晶、中低层较少的霰粒子和雨水粒子。从热动力场上看,bin(SBM fast)方案在600 hPa高度以下存在明显的涡度波列,这主要是因为bin方案将粒子群分档处理,没有捆绑不同粒子类型运动,更能细致描述出不同粒子的下沉拖曳作用。从云微物理特征上看,不同方案模拟的雪、霰、云水以及雨水粒子的比质量都较为接近,而对冰晶比质量的模拟不管在量级还是在分布范围上都存在很大的差异,这种差异决定了不同微物理方案模拟的雷达回波和降水量级和相态的差异。展开更多
文摘2015年7月15日00:00至20日00:00(协调世界时,下同)期间,京津冀地区每天傍晚均有明显雷阵雨天气过程发生,持续约一周时间。天气形势分析发现:虽然都是傍晚到夜间出现雷雨天气,但15~17日的雷雨过程,500 h Pa主要表现为两槽一脊天气形势,京津冀地区处于低槽前部的不稳定区。18~19日两天,京津冀地区西部为低槽,东部为副热带高压(副高),主要表现为西低东高的天气形势,是华北地区典型的暴雨天气型之一。15~17日与18~19日的水汽输送路径也有明显区别,15~17日以西南暖湿气流直接向东北方向输送以及台风外围偏东风气流向京津冀输送水汽为主,18~19日则为西南暖湿气流向东北方向直接输送到东海以东洋面后转为偏东风向京津冀输送为主,但是,水汽辐合中心均出现在京津冀附近,且水汽通量及辐合总是在12:00大于00:00,意味着傍晚的水汽条件好于白天。动力条件方面,整个降水期间,京津冀区域的对流层高层均处于南亚高压外围辐散区,低层辐合层次主要集中在700 h Pa以下,近地面层12:00的辐合更为剧烈,中层均有干冷偏西气流下沉后与低层暖湿偏东气流辐合抬升,12:00的干冷气流下沉层次更低,与偏东风的辐合更强。温度层结方面,京津冀区域平均的气温垂直温差在800 h Pa以下总是12:00高于00:00。降水期间,上升速度在中高层均表现为00:00大于12:00,但是低层的上升速度都是12:00强于00:00,傍晚的动力和水汽条件都更利于降水发生。
文摘本文利用欧洲中心ERA-Interim和NOAA的再分析资料并应用拉格朗日后向轨迹追踪的方法对2015年5月24日发生在南疆的一次强降水过程进行了动力诊断和水汽特征分析。结果表明此次强降水过程的直接影响系统是中亚低涡前西南气流中发展的小槽,南北两支高空急流辐散场叠加引发的对流层高层加剧的抽吸作用和高低空急流的耦合作用共同导致了深厚强烈的上升运动,是这次强降水主要的动力抬升机制。TBB(black body temperature)的演变与降水的发生、发展有很好的对应关系,TBB中心降至-50°C以下时降水开始且随其中心强度的扩大降水也持续加强。进一步诊断发现,低层850 h Pa对流涡度矢量(CVV)垂直分量的正值中心在降水前6~12小时已可以大致体现未来强降水的落区。此次南疆盆地强降水的水汽主要源于黑海和里海,低空急流引导了一部分水汽进入南疆,HYSPLIT模式后向追踪的结果表明,此次强降水过程主要有两条水汽通道,均源于新疆以西的欧亚大陆但输送路径有所差异,偏西路径和转向路径分别主要输送800 hPa以上和以下的水汽,降水发生前两条路径在垂直方向上均有明显抬升,水汽辐合有利于暴雨的形成。
文摘利用NCEP/NCAR(美国国家环境预报中心/国家大气研究中心)的全球预报系统(GFS)再分析资料、欧洲气象中心(ERA-interim)资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演降水资料,对2014年第10号台风Matmo生成后西北行并登陆台湾及福建过程中的特征进行了分析,揭示出Matmo移动路径主要受西太平洋副热带高压(简称西太副高)外围引导气流影响。动、热力物理量场分析表明,Matmo在登陆福建前后,福建上空一直维持深厚的涡旋结构,福建东南部上空的上升区与台湾海峡及福建西部附近的下沉运动区形成明显的垂直环流圈。同时,南海上空有明显的西南急流(风速大于16 m s^(-1)),Matmo的水汽来源主要有两条,分别为孟加拉湾和南海以及西太副高南侧。充足的水汽输送及低层水汽辐合抬升有利于Matmo登陆后的强降水发生和维持。Matmo登陆福建后仍然保持低层辐合、高层辐散,有利于持续暴雨的发生。Matmo登陆福建期间始终处于风速垂直切变小值区(小于9 m s^(-1))中,环境风速的弱垂直切变有利于Matmo暖心结构及高空辐散形势的维持,是Matmo在登陆后依然能维持自身强度不衰减的原因之一。
文摘基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。
文摘本文以ERA5(ECMWF Reanalysis v5)再分析资料为初始场,利用WRF(The Weather Research and Forecasting)模式对2020年4月19~20日的一次大范围暴雪天气过程进行数值模拟研究。模式采用不同云微物理参数化方案进行敏感性试验,并与实测数据(自动站降水数据、雷达基数据)进行对比,分析了此次暴雪天气过程不同阶段的降水、雷达反射率、动热力和水凝物的时空演变和三维细致结构特征。研究表明:Morrison方案更好的模拟出了本次暴雪天气过程,表现在模拟的雷达回波强度、范围及形态更与实况一致,模拟出的降水量的相关系数和均方根误差都优于其他方案;其微物理细致结构表现为强上升运动和低层正涡度的长时间维持,以及7 km以上高层较多的冰晶、中低层较少的霰粒子和雨水粒子。从热动力场上看,bin(SBM fast)方案在600 hPa高度以下存在明显的涡度波列,这主要是因为bin方案将粒子群分档处理,没有捆绑不同粒子类型运动,更能细致描述出不同粒子的下沉拖曳作用。从云微物理特征上看,不同方案模拟的雪、霰、云水以及雨水粒子的比质量都较为接近,而对冰晶比质量的模拟不管在量级还是在分布范围上都存在很大的差异,这种差异决定了不同微物理方案模拟的雷达回波和降水量级和相态的差异。