期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多模态学习的空间科学实验图像描述
被引量:
2
1
作者
李沛卓
万雪
李盛阳
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第12期2944-2955,共12页
为了让科学家快速定位实验关键过程,获取更为详细的实验过程信息,需要对空间科学实验自动添加描述性文字内容。针对空间科学实验目标较小且数据样本较少的问题,本文提出了基于多模态学习的空间科学实验图像描述算法模型,主要分为四部分...
为了让科学家快速定位实验关键过程,获取更为详细的实验过程信息,需要对空间科学实验自动添加描述性文字内容。针对空间科学实验目标较小且数据样本较少的问题,本文提出了基于多模态学习的空间科学实验图像描述算法模型,主要分为四部分:基于改进U-Net的语义分割模型,基于语义分割的空间科学实验词汇候选,自下而上的通用场景图像特征向量提取和基于多模态学习的描述语句生成。此外,本文构建了空间科学实验目标数据集,包括语义掩码标注和图像描述标注,来对空间科学实验进行图像描述。实验结果表明:相对于经典的图像描述模型Neuraltalk2,本文提出的算法在精度评定方面,METEOR结果平均提升了0.089,SPICE结果平均提升了0.174;解决了空间科学实验目标较小、样本较少的难点,构建基于多模态学习的空间科学实验图像描述模型,满足对空间科学实验场景进行专业性、精准性的描述要求,实现从低层次感知到深层场景理解的能力。
展开更多
关键词
空间科学实验
图像描述
语义分割
多模态学习
下载PDF
职称材料
题名
基于多模态学习的空间科学实验图像描述
被引量:
2
1
作者
李沛卓
万雪
李盛阳
机构
中国科学院
大学
中国科学院
空间
应用
工程
与
技术
中心
中国科学院
太空
应用
重点
实验室
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第12期2944-2955,共12页
基金
中国科学院空间应用中心前瞻性课题重点项目(No.Y8031831WY)。
文摘
为了让科学家快速定位实验关键过程,获取更为详细的实验过程信息,需要对空间科学实验自动添加描述性文字内容。针对空间科学实验目标较小且数据样本较少的问题,本文提出了基于多模态学习的空间科学实验图像描述算法模型,主要分为四部分:基于改进U-Net的语义分割模型,基于语义分割的空间科学实验词汇候选,自下而上的通用场景图像特征向量提取和基于多模态学习的描述语句生成。此外,本文构建了空间科学实验目标数据集,包括语义掩码标注和图像描述标注,来对空间科学实验进行图像描述。实验结果表明:相对于经典的图像描述模型Neuraltalk2,本文提出的算法在精度评定方面,METEOR结果平均提升了0.089,SPICE结果平均提升了0.174;解决了空间科学实验目标较小、样本较少的难点,构建基于多模态学习的空间科学实验图像描述模型,满足对空间科学实验场景进行专业性、精准性的描述要求,实现从低层次感知到深层场景理解的能力。
关键词
空间科学实验
图像描述
语义分割
多模态学习
Keywords
space science experiment
image captioning
semantic segmentation
multi-modal learning
分类号
TP394.1 [自动化与计算机技术—计算机应用技术]
TH691.9 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多模态学习的空间科学实验图像描述
李沛卓
万雪
李盛阳
《光学精密工程》
EI
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部