针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。展开更多
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。