研究表明,中酸性岩浆岩(包括 SiO_2>56%的中酸性火山岩和侵入岩)的 Sr 和 Yb 是两个非常有意义的地球化学指标,如果大致按照 Sr=400×10^(-6)和 Yb=2×10^(-6)为标志,可以划分出4类花岗岩,即:高 Sr 低 Yb(Sr>400×10^...研究表明,中酸性岩浆岩(包括 SiO_2>56%的中酸性火山岩和侵入岩)的 Sr 和 Yb 是两个非常有意义的地球化学指标,如果大致按照 Sr=400×10^(-6)和 Yb=2×10^(-6)为标志,可以划分出4类花岗岩,即:高 Sr 低 Yb(Sr>400×10^(-6),Yb<2×10^(-6))、低 Sr 低 Yb(Sr<400×10^(-6),Yb<2×10^(-6))、低 Sr 高 Yb(Sr<400×10^(-6),Yb>2×10^(-6))和高 Sr 高 Yb(Sr>400×10^(-6),Yb>2×10^(-6))型花岗岩。其中,从低 Sr 高 Yb 型中还可以分出非常低 Sr 高 Yb(Sr<100×10^(-6),Yb>2×10^(-6))的一类。因此,按照 Sr 和 Yb 含量的不同,可以将花岗岩分为5类,文中着重探讨了这5类花岗岩形成的源区深度问题,指出按照残留相组成和花岗岩地球化学特征,可以将花岗岩形成的压力分为3或4个级别:即:(1)高压下与石榴石平衡的花岗岩具有高 Sr 低Yb 的特征;(2)在中等或较高压力、麻粒岩相(由斜长石+石榴石+角闪石+辉石组成)条件下,花岗岩具低 Sr 低 Yb 或高 Sr 高 Yb 的特点(取决于原岩成分);(3)低压下,残留相有斜长石无石榴石(角闪岩相),花岗岩为低 Sr 高 Yb 类型的;(4)与蛇绿岩有关的在洋壳剖面浅部由辉长岩部分熔融形成的 M 型花岗岩,具有非常低 Sr 高 Yb 的特点,形成深度约2~5km,可能是非常低压条件下形成的。研究表明,淡色花岗岩大多分布在低 Sr 低 Yb 区,部分正长岩和钾玄岩分布在高 Sr 高 Yb 区。藏南淡色花岗岩可能形成的压力较高。文中探讨了岩浆与深度的关系,得出了一些初步的认识,指出需要进一步研究的问题。为了得到经得起考验的结论,还需要更多资料的积累,更多理论的探讨和更多实验的佐证。展开更多
花岗岩与大地构造环境之间的关系是花岗岩研究的热门话题,许多人认为,利用地球化学标志可以判别花岗岩形成的大地构造环境。勿庸置疑,花岗岩构造环境判别方法是仿效玄武岩提出来的。因此,本文从回顾玄武岩构造环境判别开始,详细剖析了Pe...花岗岩与大地构造环境之间的关系是花岗岩研究的热门话题,许多人认为,利用地球化学标志可以判别花岗岩形成的大地构造环境。勿庸置疑,花岗岩构造环境判别方法是仿效玄武岩提出来的。因此,本文从回顾玄武岩构造环境判别开始,详细剖析了Pearce et al(1984b)和Barbalin(1999)关于花岗岩构造环境判别的研究成果,指出了花岗岩构造环境判别中存在的问题。我们认为,花岗岩地球化学性质主要反映的是花岗岩源区的性质和构造环境,而非花岗岩形成时的构造环境。本文按照全球花岗岩的分布将花岗岩分为产于大洋及其边缘(海岸)的、产于板块边缘和陆内与碰撞有关的和产于陆块内部的三类花岗岩。(1)产于大洋及其边缘(海岸)的花岗岩源于洋壳类型的玄武岩(MORB、IAT、OIB等),花岗岩具明显的地幔印记ε_(Nd)(t)同位素比值高,Sr同位素比值低),大体可以用现有的判别图判别其形成的构造环境。(2)与碰撞作用有关的花岗岩大多分布在陆块边缘,同碰撞和后碰撞指的是构造(变形)事件,与板块构造环境(洋脊、岛弧、洋岛、裂谷等)在概念上是不同的。区分同碰撞和碰撞后花岗岩不能单靠花岗岩的地球化学标志,也不能单靠花岗岩构造判别图,而应当从岩石组合和岩石性质两方面入手:碰撞有利于形成埃达克岩和(具低Sr低Yb特征的)淡色花岗岩;碰撞后的伸展背景有利于形成非常低Sr高Yb的A型花岗岩。(3)产于陆块内部的花岗岩其形成主要与地幔来源的热有关,花岗岩的地球化学性质主要决定于源岩及形成时的深度,与地表浅层构造作用和事件无关。研究表明,地球上只有大约10%的花岗岩可以探讨其形成的构造环境,20%左右的花岗岩需要研究它们与构造事件的关系(同碰撞或后碰撞),而约70%的产于陆壳上的花岗岩,既无从考虑其形成的构造环境,也无需研究其与构造事件的关系。�展开更多
最近,花岗岩混合成了花岗岩研究的热点,国内外许多学者探讨了花岗岩混合问题,并尝试用不同端元组分不同比例的混合来解释花岗岩的地球化学变化。本文从花岗岩与玄武岩的对比出发,探讨了花岗岩混合的可能性和局限性。作者认为,花岗岩混...最近,花岗岩混合成了花岗岩研究的热点,国内外许多学者探讨了花岗岩混合问题,并尝试用不同端元组分不同比例的混合来解释花岗岩的地球化学变化。本文从花岗岩与玄武岩的对比出发,探讨了花岗岩混合的可能性和局限性。作者认为,花岗岩混合的现象是普遍存在的,但是次要的和局部的。岩浆混合的能力或能干性(competence of mixing)主要取决于岩浆的黏性和温度,而黏性又与硅氧四面体有关。相对于玄武岩,花岗岩的SiO_2含量高,温度低,因此,花岗质岩浆的混合能干性很低。玄武质岩浆的混合是mixing(以化学混合为主),而花岗质岩浆的混合通常只是mingling(以机械混合为主),只有在少数情况下才能达到mixing的程度,例如,埃达克岩与地幔混合形成的高镁安山岩或高镁埃达克岩。许多人认为,花岗岩中的暗色微粒包体是花岗质岩浆混合作用最显著、最直接证据。研究表明,花岗岩中的暗色微粒包体大多是闪长质成分的,其初始成分大多是玄武质的。因此,暗色微粒包体不是花岗质岩浆混合作用最显著、最直接证据,而是玄武质岩浆混合能力强过花岗质岩浆的证据。与玄武质岩浆的起源比较,花岗质岩浆从一开始熔融就是不均一的,这源于源区的不均一及熔融过程的复杂性。花岗质岩浆原始均一性的假定是不可能的。花岗岩成分的变化以及在哈克图解中成分点的"连续谱系",主要是由源区不均一性引起的,混合和分异可能有一定的作用,但毕竟是次要的。花岗质岩浆从源区生成、迁移、直至在地表喷出或在浅部定位的全过程,是一个不断均一化和不均一化的过程。但是,由于花岗质岩浆的黏性大,上述过程及岩浆演化的程度和规模都受到限制,也限制了岩浆混合的程度和规模。许多人仅从花岗岩地球化学成分的变化来研究花岗岩的成因,而很少考虑花岗岩物理性质对岩展开更多
中国东部在晚中生代时(晚侏罗世-早白垩世)有广泛的中酸性岩浆活动,按照花岗岩的地球化学特征,大致可以划分为东北、华北和华南3个岩区。本文研究表明,按照 Sr 和 Yb 的含量,大致可以将花岗岩分为5类,即:高 Sr 低 Yb 型(Sr >400μg/g...中国东部在晚中生代时(晚侏罗世-早白垩世)有广泛的中酸性岩浆活动,按照花岗岩的地球化学特征,大致可以划分为东北、华北和华南3个岩区。本文研究表明,按照 Sr 和 Yb 的含量,大致可以将花岗岩分为5类,即:高 Sr 低 Yb 型(Sr >400μg/g,Yb<2μg/g)、低 Sr 低 Yb(Sr<400μg/g,Yb<2μg/g)、低 Sr 高 Yb(Sr<400μg/g,Yh>2μg/g)、高 Sr 高 Yb 型(Sr>400μg/g,Yb>2μg/g)以及非常低 Sr 高 Yb 型(Sr<100μg/g,Yb=2-18μg/g)花岗岩。东北和华南以发育低 Sr 高 Yb 花岗岩为主,有少量高 Sr 低 Yb 和非常低 Sr 高 Yb 类型的花岗岩分布;而华北则以高 Sr 低 Yb 型花岗岩(埃达克岩)最发育,低 Sr 高Yb、低 Sr 低 Yb 型和非常低 Sr 高 Yb 型花岗岩有少量分布。本文着重探讨了华北和华南花岗岩的特征,认为华北和华南花岗岩地球化学的区别可能主要与花岗岩源区成分和深度有关,且主要受源区深度的控制。如果花岗岩熔融的源区残留相由榴辉岩组成(石榴石+辉石+金红石+/-角闪石),则花岗岩明显亏损 HREE、Nb、Ta 和 Ti,而富集 Sr 和 Al,无明显的负铕异常,属于高 Sr 低 Yb(埃达克岩)类型;如果源区深度浅,由斜长角闪岩或麻粒岩组成(斜长石+辉石+角闪石),则花岗岩相对贫Sr 富 Yb。作者认为,华北和华南花岗岩地球化学特征上的上述差异,表明在晚中生代时(晚侏罗世-早白垩世),华北和华南的地壳厚度不同:华北较厚,华南较薄;华北经历了下地壳拆沉而华南无;华北和华南的下地壳成分不,华北较基性的下地壳拆沉后,留下的地壳平均成分与华南比偏中性。展开更多
文摘研究表明,中酸性岩浆岩(包括 SiO_2>56%的中酸性火山岩和侵入岩)的 Sr 和 Yb 是两个非常有意义的地球化学指标,如果大致按照 Sr=400×10^(-6)和 Yb=2×10^(-6)为标志,可以划分出4类花岗岩,即:高 Sr 低 Yb(Sr>400×10^(-6),Yb<2×10^(-6))、低 Sr 低 Yb(Sr<400×10^(-6),Yb<2×10^(-6))、低 Sr 高 Yb(Sr<400×10^(-6),Yb>2×10^(-6))和高 Sr 高 Yb(Sr>400×10^(-6),Yb>2×10^(-6))型花岗岩。其中,从低 Sr 高 Yb 型中还可以分出非常低 Sr 高 Yb(Sr<100×10^(-6),Yb>2×10^(-6))的一类。因此,按照 Sr 和 Yb 含量的不同,可以将花岗岩分为5类,文中着重探讨了这5类花岗岩形成的源区深度问题,指出按照残留相组成和花岗岩地球化学特征,可以将花岗岩形成的压力分为3或4个级别:即:(1)高压下与石榴石平衡的花岗岩具有高 Sr 低Yb 的特征;(2)在中等或较高压力、麻粒岩相(由斜长石+石榴石+角闪石+辉石组成)条件下,花岗岩具低 Sr 低 Yb 或高 Sr 高 Yb 的特点(取决于原岩成分);(3)低压下,残留相有斜长石无石榴石(角闪岩相),花岗岩为低 Sr 高 Yb 类型的;(4)与蛇绿岩有关的在洋壳剖面浅部由辉长岩部分熔融形成的 M 型花岗岩,具有非常低 Sr 高 Yb 的特点,形成深度约2~5km,可能是非常低压条件下形成的。研究表明,淡色花岗岩大多分布在低 Sr 低 Yb 区,部分正长岩和钾玄岩分布在高 Sr 高 Yb 区。藏南淡色花岗岩可能形成的压力较高。文中探讨了岩浆与深度的关系,得出了一些初步的认识,指出需要进一步研究的问题。为了得到经得起考验的结论,还需要更多资料的积累,更多理论的探讨和更多实验的佐证。
文摘花岗岩与大地构造环境之间的关系是花岗岩研究的热门话题,许多人认为,利用地球化学标志可以判别花岗岩形成的大地构造环境。勿庸置疑,花岗岩构造环境判别方法是仿效玄武岩提出来的。因此,本文从回顾玄武岩构造环境判别开始,详细剖析了Pearce et al(1984b)和Barbalin(1999)关于花岗岩构造环境判别的研究成果,指出了花岗岩构造环境判别中存在的问题。我们认为,花岗岩地球化学性质主要反映的是花岗岩源区的性质和构造环境,而非花岗岩形成时的构造环境。本文按照全球花岗岩的分布将花岗岩分为产于大洋及其边缘(海岸)的、产于板块边缘和陆内与碰撞有关的和产于陆块内部的三类花岗岩。(1)产于大洋及其边缘(海岸)的花岗岩源于洋壳类型的玄武岩(MORB、IAT、OIB等),花岗岩具明显的地幔印记ε_(Nd)(t)同位素比值高,Sr同位素比值低),大体可以用现有的判别图判别其形成的构造环境。(2)与碰撞作用有关的花岗岩大多分布在陆块边缘,同碰撞和后碰撞指的是构造(变形)事件,与板块构造环境(洋脊、岛弧、洋岛、裂谷等)在概念上是不同的。区分同碰撞和碰撞后花岗岩不能单靠花岗岩的地球化学标志,也不能单靠花岗岩构造判别图,而应当从岩石组合和岩石性质两方面入手:碰撞有利于形成埃达克岩和(具低Sr低Yb特征的)淡色花岗岩;碰撞后的伸展背景有利于形成非常低Sr高Yb的A型花岗岩。(3)产于陆块内部的花岗岩其形成主要与地幔来源的热有关,花岗岩的地球化学性质主要决定于源岩及形成时的深度,与地表浅层构造作用和事件无关。研究表明,地球上只有大约10%的花岗岩可以探讨其形成的构造环境,20%左右的花岗岩需要研究它们与构造事件的关系(同碰撞或后碰撞),而约70%的产于陆壳上的花岗岩,既无从考虑其形成的构造环境,也无需研究其与构造事件的关系。�
文摘最近,花岗岩混合成了花岗岩研究的热点,国内外许多学者探讨了花岗岩混合问题,并尝试用不同端元组分不同比例的混合来解释花岗岩的地球化学变化。本文从花岗岩与玄武岩的对比出发,探讨了花岗岩混合的可能性和局限性。作者认为,花岗岩混合的现象是普遍存在的,但是次要的和局部的。岩浆混合的能力或能干性(competence of mixing)主要取决于岩浆的黏性和温度,而黏性又与硅氧四面体有关。相对于玄武岩,花岗岩的SiO_2含量高,温度低,因此,花岗质岩浆的混合能干性很低。玄武质岩浆的混合是mixing(以化学混合为主),而花岗质岩浆的混合通常只是mingling(以机械混合为主),只有在少数情况下才能达到mixing的程度,例如,埃达克岩与地幔混合形成的高镁安山岩或高镁埃达克岩。许多人认为,花岗岩中的暗色微粒包体是花岗质岩浆混合作用最显著、最直接证据。研究表明,花岗岩中的暗色微粒包体大多是闪长质成分的,其初始成分大多是玄武质的。因此,暗色微粒包体不是花岗质岩浆混合作用最显著、最直接证据,而是玄武质岩浆混合能力强过花岗质岩浆的证据。与玄武质岩浆的起源比较,花岗质岩浆从一开始熔融就是不均一的,这源于源区的不均一及熔融过程的复杂性。花岗质岩浆原始均一性的假定是不可能的。花岗岩成分的变化以及在哈克图解中成分点的"连续谱系",主要是由源区不均一性引起的,混合和分异可能有一定的作用,但毕竟是次要的。花岗质岩浆从源区生成、迁移、直至在地表喷出或在浅部定位的全过程,是一个不断均一化和不均一化的过程。但是,由于花岗质岩浆的黏性大,上述过程及岩浆演化的程度和规模都受到限制,也限制了岩浆混合的程度和规模。许多人仅从花岗岩地球化学成分的变化来研究花岗岩的成因,而很少考虑花岗岩物理性质对岩
文摘中国东部在晚中生代时(晚侏罗世-早白垩世)有广泛的中酸性岩浆活动,按照花岗岩的地球化学特征,大致可以划分为东北、华北和华南3个岩区。本文研究表明,按照 Sr 和 Yb 的含量,大致可以将花岗岩分为5类,即:高 Sr 低 Yb 型(Sr >400μg/g,Yb<2μg/g)、低 Sr 低 Yb(Sr<400μg/g,Yb<2μg/g)、低 Sr 高 Yb(Sr<400μg/g,Yh>2μg/g)、高 Sr 高 Yb 型(Sr>400μg/g,Yb>2μg/g)以及非常低 Sr 高 Yb 型(Sr<100μg/g,Yb=2-18μg/g)花岗岩。东北和华南以发育低 Sr 高 Yb 花岗岩为主,有少量高 Sr 低 Yb 和非常低 Sr 高 Yb 类型的花岗岩分布;而华北则以高 Sr 低 Yb 型花岗岩(埃达克岩)最发育,低 Sr 高Yb、低 Sr 低 Yb 型和非常低 Sr 高 Yb 型花岗岩有少量分布。本文着重探讨了华北和华南花岗岩的特征,认为华北和华南花岗岩地球化学的区别可能主要与花岗岩源区成分和深度有关,且主要受源区深度的控制。如果花岗岩熔融的源区残留相由榴辉岩组成(石榴石+辉石+金红石+/-角闪石),则花岗岩明显亏损 HREE、Nb、Ta 和 Ti,而富集 Sr 和 Al,无明显的负铕异常,属于高 Sr 低 Yb(埃达克岩)类型;如果源区深度浅,由斜长角闪岩或麻粒岩组成(斜长石+辉石+角闪石),则花岗岩相对贫Sr 富 Yb。作者认为,华北和华南花岗岩地球化学特征上的上述差异,表明在晚中生代时(晚侏罗世-早白垩世),华北和华南的地壳厚度不同:华北较厚,华南较薄;华北经历了下地壳拆沉而华南无;华北和华南的下地壳成分不,华北较基性的下地壳拆沉后,留下的地壳平均成分与华南比偏中性。