期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
函数型数据聚类分析研究综述与展望 被引量:31
1
作者 王德青 朱建平 +1 位作者 刘晓葳 何凌云 《数理统计与管理》 CSSCI 北大核心 2018年第1期51-63,共13页
函数型数据是大数据时代的典型数据,也是大数据分析的重要视角,其稀疏粗糙、无穷维、低信噪比等复杂特性导致传统聚类分析方法凸显诸多弊端。为了厘清函数型数据聚类分析的研究现状,在界定函数型数据概念与内涵基础上,本文依据方法原理... 函数型数据是大数据时代的典型数据,也是大数据分析的重要视角,其稀疏粗糙、无穷维、低信噪比等复杂特性导致传统聚类分析方法凸显诸多弊端。为了厘清函数型数据聚类分析的研究现状,在界定函数型数据概念与内涵基础上,本文依据方法原理差异将函数型数据聚类分析方法划分为四类,理论剖析并模拟检验每一类别方法的相对优势和存在的不足。最后,针对现有研究尚待解决的关键问题,并结合大数据时代的数据特征,展望了函数型数据聚类分析的未来研究方向。 展开更多
关键词 函数型数据 聚类分析 文献综述 研究展望
原文传递
函数型自适应权重聚类分析的再拓展 被引量:4
2
作者 王德青 刘晓葳 朱建平 《数理统计与管理》 CSSCI 北大核心 2016年第1期81-88,共8页
离散视角下,函数型自适应权重聚类的有效性取决于基函数的最优选择,目前尚无客观统一准则。基于随机过程的Karhunen-Loeve展开定理,本文对函数型自适应权重聚类分析进行了连续视角的进一步拓展。相对现有同类函数型数据聚类分析,拓展模... 离散视角下,函数型自适应权重聚类的有效性取决于基函数的最优选择,目前尚无客观统一准则。基于随机过程的Karhunen-Loeve展开定理,本文对函数型自适应权重聚类分析进行了连续视角的进一步拓展。相对现有同类函数型数据聚类分析,拓展模型的核心优势在于:(1)基于Karhunen-Loeve展开实现了函数空间向多元统计空间的过渡,避免了人为选择基函数的主观任意性;(2)依据变量重要程度重构自适应权重距离为函数之间的相似性测度,并有充分的理论基础保证其必要性、合理性;(3)在充分保留原始数据信息的前提下,能够应用经典的有限维多元分析方法解决无限维的函数型聚类问题。实证检验表明,新模型能够降低聚类过程的计算成本,显著提升分类正确率、稳健性和普遍适用性。 展开更多
关键词 函数型数据 聚类分析 Karhunen-Loeve展开 自适应赋权
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部