动力电池的准确建模及荷电状态(State of charge,SOC)的精准估计对提高电池的利用效率、延长使用寿命具有重要意义。各类SOC估计方法中,基于电池等效电路模型估计法的精准性和鲁棒性好,且电池模型结构简单、计算量小,在电池管理系统(Bat...动力电池的准确建模及荷电状态(State of charge,SOC)的精准估计对提高电池的利用效率、延长使用寿命具有重要意义。各类SOC估计方法中,基于电池等效电路模型估计法的精准性和鲁棒性好,且电池模型结构简单、计算量小,在电池管理系统(Batter management system,BMS)中具有较好应用前景。聚焦基于等效电路模型的SOC估计方法,首先简要归纳了常见的电池等效电路模型,重点对基于等效电路模型的SOC估计方法进行了系统梳理和优缺点比较,对目前影响SOC估计精度的主要症结及应对策略进行了分析和总结。最后,对未来SOC估计方法的研究动向进行了讨论与展望。展开更多
传统的有限集预测功率控制应用在Vienna整流器时,在电网不平衡条件下输入电流将产生大量的三次谐波,严重影响Vienna整流器的正常工作。提出了一种基于电网不平衡的三相Vienna整流器双闭环控制策略,内环采用新型有限集预测功率控制(new-f...传统的有限集预测功率控制应用在Vienna整流器时,在电网不平衡条件下输入电流将产生大量的三次谐波,严重影响Vienna整流器的正常工作。提出了一种基于电网不平衡的三相Vienna整流器双闭环控制策略,内环采用新型有限集预测功率控制(new-finite control set-model predictive direct power control,N-FCS-MPDPC),外环采用线性自抗扰控制(linear auto disturbance rejection control,LADRC)。通过引入重新定义的无功功率,使得在电网不平衡时能够同时有效控制瞬时有功功率二次谐波和瞬时无功功率二次谐波,实现了Vienna整流器在电网不平衡条件下的正常工作。电压外环采用线性自抗扰控制,还可以克服PI控制存在的电压超调和动态响应慢的问题;同时,其在电网不平衡条件下也具有较好的鲁棒性和较快的跟踪性能。最后,在Simulink中搭建了三相Vienna整流器的仿真模型,对所提控制算法进行了验证。展开更多
文摘动力电池的准确建模及荷电状态(State of charge,SOC)的精准估计对提高电池的利用效率、延长使用寿命具有重要意义。各类SOC估计方法中,基于电池等效电路模型估计法的精准性和鲁棒性好,且电池模型结构简单、计算量小,在电池管理系统(Batter management system,BMS)中具有较好应用前景。聚焦基于等效电路模型的SOC估计方法,首先简要归纳了常见的电池等效电路模型,重点对基于等效电路模型的SOC估计方法进行了系统梳理和优缺点比较,对目前影响SOC估计精度的主要症结及应对策略进行了分析和总结。最后,对未来SOC估计方法的研究动向进行了讨论与展望。
文摘传统的有限集预测功率控制应用在Vienna整流器时,在电网不平衡条件下输入电流将产生大量的三次谐波,严重影响Vienna整流器的正常工作。提出了一种基于电网不平衡的三相Vienna整流器双闭环控制策略,内环采用新型有限集预测功率控制(new-finite control set-model predictive direct power control,N-FCS-MPDPC),外环采用线性自抗扰控制(linear auto disturbance rejection control,LADRC)。通过引入重新定义的无功功率,使得在电网不平衡时能够同时有效控制瞬时有功功率二次谐波和瞬时无功功率二次谐波,实现了Vienna整流器在电网不平衡条件下的正常工作。电压外环采用线性自抗扰控制,还可以克服PI控制存在的电压超调和动态响应慢的问题;同时,其在电网不平衡条件下也具有较好的鲁棒性和较快的跟踪性能。最后,在Simulink中搭建了三相Vienna整流器的仿真模型,对所提控制算法进行了验证。