期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种耦合LSTM算法和云模型的疫情传播风险预测模型 被引量:5
1
作者 李照 高惠瑛 +1 位作者 代晓奕 孙海 《地球信息科学学报》 CSCD 北大核心 2021年第11期1924-1935,共12页
模拟传染病时空传播、定量评估疫情风险对科学防控、精准施策具有重要的现实意义。本文融合多源时空数据,构建了耦合LSTM算法和云模型的疫情传播风险预测模型。该模型首先基于GIS和LSTM算法构建疫情空间演变模拟模型,通过学习历史疫情... 模拟传染病时空传播、定量评估疫情风险对科学防控、精准施策具有重要的现实意义。本文融合多源时空数据,构建了耦合LSTM算法和云模型的疫情传播风险预测模型。该模型首先基于GIS和LSTM算法构建疫情空间演变模拟模型,通过学习历史疫情数据中的规律,以1 km×1 km为空间尺度、天为时间尺度模拟传染病时空传播过程。其次,基于模拟传染病例数据和疫情传播时空影响因素构建风险评价指标,应用云模型和自适应策略构建疫情风险评估模型,实现多空间尺度的疫情风险评价。在实证研究阶段,应用该模型对北京2020年6月份突发COVID-19疫情空间演变过程进行模拟和风险评估,并引入常规机器学习模型作比较验证。结果表明:应用于疫情时空传播模拟,相较其它常规的机器学习模型,考虑时序关系的LSTM模型的模拟精度更高(MAE为0.00261),拟合度更好(R-square为0.9455);耦合模型不仅能充分考虑传染源因素、天气因素、疫情扩散因素及疫情防御因素对疫情风险传播的影响,反映风险演变趋势,还能快速量化区域风险等级,实现不同空间分辨率下的疫情风险评估。因此,基于LSTM算法和云模型的耦合模型可有效预测疫情的传播风险,同时,也为传染病时空传播建模与风险评估提供了方法参考。 展开更多
关键词 传染病 长短期记忆(LSTM)模型 云模型 空间演变模拟 风险评估 风险预测 耦合模型 COVID-19
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部