本文主要对近年来利用静止气象卫星监测、分析和研究对流初生的国内外若干研究结果和进展给予了简要综述。主要涉及对流的判识、对流的追踪技术、初生对流的多光谱云顶特征、初生对流的判据和问题与展望等方面的内容。总体而言,利用静...本文主要对近年来利用静止气象卫星监测、分析和研究对流初生的国内外若干研究结果和进展给予了简要综述。主要涉及对流的判识、对流的追踪技术、初生对流的多光谱云顶特征、初生对流的判据和问题与展望等方面的内容。总体而言,利用静止气象卫星监测初生对流,以及发展的对流,是目前国内外研究和探索的热点之一。研究表明,通过精心挑选对对流敏感的光谱通道、通道组合和时间演变判据,可以对初生对流进行监测,可比地面雷达更早地预警降雨系统的发展,显示出在临近预报中的应用潜力。监测对流初生的算法流程大体上分为目标判识、目标追踪和初生对流判识三个部分。国际上主要的一些与对流初生相关的成熟算法各具特色,如RDT(Rapidly Developing Thunderstorms)算法在对流判识中强调了垂直形态的峰值检测,追踪对流时利用了速度外推并检测重叠面积。ForTraCC(Forecasting and Tracking the Evolution of Cloud Clusters)算法关注活跃对流,一定程度上考虑了对流合并和分裂的情况,具有外推预报功能。GOES-R(The Geostationary Operational Environmental Satellite R-Series Program)算法特点是多光谱的使用,利用多光谱判识技术进行对流云顶检测,是面向下一代静止气象卫星探测能力的算法。UWCI(The University of Wisconsin Convective Initiation)构思巧妙,所提出的box-average技术简单易行,适合软件工程化。随着卫星传感器和探测能力的发展,以及计算机技术的快速发展,更多卫星资料将用于联合判识对流。同时,更新的计算机视觉、计算机图像处理和模式识别技术也将用来解决追踪中的复杂问题,进一步改进初生对流的判识准确率。展开更多
通过人为控制灌溉水平,在冬小麦3个发育期(孕穗、开花、乳熟)测定了冠层光谱和叶片含水量(leaf water content,LWC)。针对每期数据,结合偏最小二乘回归和迭代特征去除,建立了基于诊断波段的LWC回归模型。结果表明,叶片水分的光谱响应及...通过人为控制灌溉水平,在冬小麦3个发育期(孕穗、开花、乳熟)测定了冠层光谱和叶片含水量(leaf water content,LWC)。针对每期数据,结合偏最小二乘回归和迭代特征去除,建立了基于诊断波段的LWC回归模型。结果表明,叶片水分的光谱响应及反演精度受小麦生长状态的影响。在孕穗、开花和乳熟3个发育阶段,回归模型中光谱数据的最佳利用形式分别为对数光谱、导数光谱和反射率光谱;重要光谱区间为SWIR,NIR和SWIR;模型交叉验证决定系数(R2CV)为0.750,0.889和0.696。研究结论对今后监测冬小麦旱情和开发作物水分遥感产品具有重要的指导作用。展开更多
风云三号C星(FY-3C)已经于2013年9月23日发射升空,其上装载的微波湿温探测仪(MWHTS)已于9月30日开机正常工作.MWHTS具有对大气温度和湿度垂直分布进行同步探测的能力.MWHTS为跨轨扫描式微波辐射计,在89-191GHz毫米波段内设置了十五...风云三号C星(FY-3C)已经于2013年9月23日发射升空,其上装载的微波湿温探测仪(MWHTS)已于9月30日开机正常工作.MWHTS具有对大气温度和湿度垂直分布进行同步探测的能力.MWHTS为跨轨扫描式微波辐射计,在89-191GHz毫米波段内设置了十五个探测通道,其中包括118.75GHz氧气吸收线附近的8个大气温度探测通道,183.31GHz水汽吸收线附近的5个大气湿度探测通道,以及89GHz和150GHz两个窗区通道.设置在118.75GHz的一组毫米波探测通道是国际上业务卫星首次使用的大气探测通道,这组通道和183.31GHz通道对大气进行联合探测,将获得更加精细的大气温湿度垂直分布数据,为数值预报和气候研究提供丰富信息.为保证MWHTS观测资料的定量应用,对仪器性能和定标精度进行了在轨测试.利用MWHTS在轨正常工作后的三个月数据,对仪器在轨定标的基础数据:冷空和黑体计数值,黑体和仪器温度进行监测分析和质量检验,经过质量检验的在轨定标基础数据,结合发射前真空试验得到的非线性订正项在轨定标生成MWHTS观测亮温数据.评估MWHTS在轨辐射定标结果的精度和偏差特性使用了三种方法:1通过场地定标试验获取大气温湿廓线和地面温度等大气参数信息,结合微波逐线正演辐射传输模式MonoRTM(Monochromatic Radiative Transfer Model)模拟MWHTS的上行微波辐射亮温,与MWHTS实际观测结果进行对比分析;2两个通道特性一致的同类星载被动微波载荷同时观测同一目标,观测亮温的差异主要取决于两个载荷的定标系统偏差.选取美国SNPP上搭载的微波探测仪器ATMS作为MWHTS的参考载荷,基于SNO(simultaneous nadir overpass)技术,对两个仪器的观测亮温进行交叉比对,观测亮温时空匹配及均匀性检验的条件为:观测时间差异小于20min,观测像元中心距离小于3km,观测角度在星下点附近差异小于5°,观测像元周围3×3像元内的亮展开更多
文摘本文主要对近年来利用静止气象卫星监测、分析和研究对流初生的国内外若干研究结果和进展给予了简要综述。主要涉及对流的判识、对流的追踪技术、初生对流的多光谱云顶特征、初生对流的判据和问题与展望等方面的内容。总体而言,利用静止气象卫星监测初生对流,以及发展的对流,是目前国内外研究和探索的热点之一。研究表明,通过精心挑选对对流敏感的光谱通道、通道组合和时间演变判据,可以对初生对流进行监测,可比地面雷达更早地预警降雨系统的发展,显示出在临近预报中的应用潜力。监测对流初生的算法流程大体上分为目标判识、目标追踪和初生对流判识三个部分。国际上主要的一些与对流初生相关的成熟算法各具特色,如RDT(Rapidly Developing Thunderstorms)算法在对流判识中强调了垂直形态的峰值检测,追踪对流时利用了速度外推并检测重叠面积。ForTraCC(Forecasting and Tracking the Evolution of Cloud Clusters)算法关注活跃对流,一定程度上考虑了对流合并和分裂的情况,具有外推预报功能。GOES-R(The Geostationary Operational Environmental Satellite R-Series Program)算法特点是多光谱的使用,利用多光谱判识技术进行对流云顶检测,是面向下一代静止气象卫星探测能力的算法。UWCI(The University of Wisconsin Convective Initiation)构思巧妙,所提出的box-average技术简单易行,适合软件工程化。随着卫星传感器和探测能力的发展,以及计算机技术的快速发展,更多卫星资料将用于联合判识对流。同时,更新的计算机视觉、计算机图像处理和模式识别技术也将用来解决追踪中的复杂问题,进一步改进初生对流的判识准确率。
文摘通过人为控制灌溉水平,在冬小麦3个发育期(孕穗、开花、乳熟)测定了冠层光谱和叶片含水量(leaf water content,LWC)。针对每期数据,结合偏最小二乘回归和迭代特征去除,建立了基于诊断波段的LWC回归模型。结果表明,叶片水分的光谱响应及反演精度受小麦生长状态的影响。在孕穗、开花和乳熟3个发育阶段,回归模型中光谱数据的最佳利用形式分别为对数光谱、导数光谱和反射率光谱;重要光谱区间为SWIR,NIR和SWIR;模型交叉验证决定系数(R2CV)为0.750,0.889和0.696。研究结论对今后监测冬小麦旱情和开发作物水分遥感产品具有重要的指导作用。
文摘风云三号C星(FY-3C)已经于2013年9月23日发射升空,其上装载的微波湿温探测仪(MWHTS)已于9月30日开机正常工作.MWHTS具有对大气温度和湿度垂直分布进行同步探测的能力.MWHTS为跨轨扫描式微波辐射计,在89-191GHz毫米波段内设置了十五个探测通道,其中包括118.75GHz氧气吸收线附近的8个大气温度探测通道,183.31GHz水汽吸收线附近的5个大气湿度探测通道,以及89GHz和150GHz两个窗区通道.设置在118.75GHz的一组毫米波探测通道是国际上业务卫星首次使用的大气探测通道,这组通道和183.31GHz通道对大气进行联合探测,将获得更加精细的大气温湿度垂直分布数据,为数值预报和气候研究提供丰富信息.为保证MWHTS观测资料的定量应用,对仪器性能和定标精度进行了在轨测试.利用MWHTS在轨正常工作后的三个月数据,对仪器在轨定标的基础数据:冷空和黑体计数值,黑体和仪器温度进行监测分析和质量检验,经过质量检验的在轨定标基础数据,结合发射前真空试验得到的非线性订正项在轨定标生成MWHTS观测亮温数据.评估MWHTS在轨辐射定标结果的精度和偏差特性使用了三种方法:1通过场地定标试验获取大气温湿廓线和地面温度等大气参数信息,结合微波逐线正演辐射传输模式MonoRTM(Monochromatic Radiative Transfer Model)模拟MWHTS的上行微波辐射亮温,与MWHTS实际观测结果进行对比分析;2两个通道特性一致的同类星载被动微波载荷同时观测同一目标,观测亮温的差异主要取决于两个载荷的定标系统偏差.选取美国SNPP上搭载的微波探测仪器ATMS作为MWHTS的参考载荷,基于SNO(simultaneous nadir overpass)技术,对两个仪器的观测亮温进行交叉比对,观测亮温时空匹配及均匀性检验的条件为:观测时间差异小于20min,观测像元中心距离小于3km,观测角度在星下点附近差异小于5°,观测像元周围3×3像元内的亮