针对传统检测技术无法原位分析锂离子电池热失控混合气体的问题,利用气体传感与拉曼光谱两种技术的耦合,研究了三元锂离子电池热滥用时释放的特征气体组分及其体积分数变化,通过自制的热滥用装置对不同荷电状态(state of charge,SOC)下...针对传统检测技术无法原位分析锂离子电池热失控混合气体的问题,利用气体传感与拉曼光谱两种技术的耦合,研究了三元锂离子电池热滥用时释放的特征气体组分及其体积分数变化,通过自制的热滥用装置对不同荷电状态(state of charge,SOC)下电池的热失控行为进行了综合分析,结果表明:电池安全阀开启温度和热失控起始温度随着SOC的增加而降低,电池最高表面温度和气体最高温度呈现相反的趋势;25%荷电状态下热失控最大压力最高,其他实验组热失控最大压力随SOC的增加而升高;传感器开始检测到气体增长趋势的时间比观测到燃爆现象的时刻至少提前了120 s;不同SOC电池热失控后装置内的CO_(2)、CO、H_(2)体积分数范围分别为1.70%~15.48%、1.32%~13.86%、0.59%~4.15%。研究结果可为评估电池安全性及热失控早期预警提供理论依据和技术支撑。展开更多
为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控...为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控过程中的温度及密闭实验舱的压力变化,比较不同压力环境下的热失控特征。把得到的热失控原位气体分别通入气相色谱-质谱联用仪和自主搭建的锂电池爆炸极限测试平台,对锂电池热失控产气分别进行成分分析及爆炸风险分析。研究结果表明:随着环境压力的降低,电池越早触发热失控,其产生高温和气体冲击的危险性也随之降低。不同压力环境下产生的气体成分及含量也有所不同,随着环境压力的降低,CO_(2)含量减少,而不饱和烃C_(4)H_(8)、C_(4)H_(6)、C_(5)H_(10)等气体含量增加,而这也正是低压环境下爆炸风险更大的原因。锂离子电池热失控气体爆炸上下限范围随压力降低而增大,从而造成更大的风险。研究结果可为锂离子电池在航空领域安全性研究提供理论依据,为电池的安全防控提供数据参考。展开更多
文摘针对传统检测技术无法原位分析锂离子电池热失控混合气体的问题,利用气体传感与拉曼光谱两种技术的耦合,研究了三元锂离子电池热滥用时释放的特征气体组分及其体积分数变化,通过自制的热滥用装置对不同荷电状态(state of charge,SOC)下电池的热失控行为进行了综合分析,结果表明:电池安全阀开启温度和热失控起始温度随着SOC的增加而降低,电池最高表面温度和气体最高温度呈现相反的趋势;25%荷电状态下热失控最大压力最高,其他实验组热失控最大压力随SOC的增加而升高;传感器开始检测到气体增长趋势的时间比观测到燃爆现象的时刻至少提前了120 s;不同SOC电池热失控后装置内的CO_(2)、CO、H_(2)体积分数范围分别为1.70%~15.48%、1.32%~13.86%、0.59%~4.15%。研究结果可为评估电池安全性及热失控早期预警提供理论依据和技术支撑。
文摘为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控过程中的温度及密闭实验舱的压力变化,比较不同压力环境下的热失控特征。把得到的热失控原位气体分别通入气相色谱-质谱联用仪和自主搭建的锂电池爆炸极限测试平台,对锂电池热失控产气分别进行成分分析及爆炸风险分析。研究结果表明:随着环境压力的降低,电池越早触发热失控,其产生高温和气体冲击的危险性也随之降低。不同压力环境下产生的气体成分及含量也有所不同,随着环境压力的降低,CO_(2)含量减少,而不饱和烃C_(4)H_(8)、C_(4)H_(6)、C_(5)H_(10)等气体含量增加,而这也正是低压环境下爆炸风险更大的原因。锂离子电池热失控气体爆炸上下限范围随压力降低而增大,从而造成更大的风险。研究结果可为锂离子电池在航空领域安全性研究提供理论依据,为电池的安全防控提供数据参考。