基于深度学习的目标检测方法是目前计算机视觉领域的热点,在目标识别、跟踪等领域发挥了重要的作用.随着研究的深入开展,基于深度学习的目标检测方法主要分为有锚框的目标检测方法和无锚框的目标检测方法,其中无锚框的目标检测方法无需...基于深度学习的目标检测方法是目前计算机视觉领域的热点,在目标识别、跟踪等领域发挥了重要的作用.随着研究的深入开展,基于深度学习的目标检测方法主要分为有锚框的目标检测方法和无锚框的目标检测方法,其中无锚框的目标检测方法无需预定义大量锚框,具有更低的模型复杂度和更稳定的检测性能,是目前目标检测领域中较前沿的方法.在调研国内外相关文献的基础上,梳理基于无锚框的目标检测方法及各场景下的常用数据集,根据样本分配方式不同,分别从基于关键点组合、中心点回归、Transformer、锚框和无锚框融合等4个方面进行整体结构分析和总结,并结合COCO(Common objects in context)数据集上的性能指标进一步对比.在此基础上,介绍了无锚框目标检测方法在重叠目标、小目标和旋转目标等复杂场景情况下的应用,聚焦目标遮挡、尺寸过小和角度多等关键问题,综述现有方法的优缺点及难点.最后对无锚框目标检测方法中仍存在的问题进行总结并对未来发展的应用趋势进行展望.展开更多
烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影...烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影响运行性能等级的检测参数;然后,采用多粒度区间信息粒化实现检测参数时间序列数据的降维,并进行粒度聚类,得到聚类标签;最后,以聚类得到的聚类标签为输入,利用随机森林算法进行运行性能等级评价.利用实际钢铁企业的运行数据进行实验,构建两个对比实验,分别采用基于时间序列数据聚类(Time series data clustering,TSDC)方法和基于时间序列特征聚类(Time series feature clustering,TSFC)方法.实验结果表明,该方法为有效评价烧结过程的运行性能提供了一套可行方案,为操作人员提升烧结过程运行性能提供了有力的指导.展开更多
文摘基于深度学习的目标检测方法是目前计算机视觉领域的热点,在目标识别、跟踪等领域发挥了重要的作用.随着研究的深入开展,基于深度学习的目标检测方法主要分为有锚框的目标检测方法和无锚框的目标检测方法,其中无锚框的目标检测方法无需预定义大量锚框,具有更低的模型复杂度和更稳定的检测性能,是目前目标检测领域中较前沿的方法.在调研国内外相关文献的基础上,梳理基于无锚框的目标检测方法及各场景下的常用数据集,根据样本分配方式不同,分别从基于关键点组合、中心点回归、Transformer、锚框和无锚框融合等4个方面进行整体结构分析和总结,并结合COCO(Common objects in context)数据集上的性能指标进一步对比.在此基础上,介绍了无锚框目标检测方法在重叠目标、小目标和旋转目标等复杂场景情况下的应用,聚焦目标遮挡、尺寸过小和角度多等关键问题,综述现有方法的优缺点及难点.最后对无锚框目标检测方法中仍存在的问题进行总结并对未来发展的应用趋势进行展望.
文摘烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影响运行性能等级的检测参数;然后,采用多粒度区间信息粒化实现检测参数时间序列数据的降维,并进行粒度聚类,得到聚类标签;最后,以聚类得到的聚类标签为输入,利用随机森林算法进行运行性能等级评价.利用实际钢铁企业的运行数据进行实验,构建两个对比实验,分别采用基于时间序列数据聚类(Time series data clustering,TSDC)方法和基于时间序列特征聚类(Time series feature clustering,TSFC)方法.实验结果表明,该方法为有效评价烧结过程的运行性能提供了一套可行方案,为操作人员提升烧结过程运行性能提供了有力的指导.