Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable ...Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable inhibitory mechanism of QU. Methods QU and specific substrate were concurrently incubated, with HPLC detection of the substrate metabolites for data analysis. The magnitude of inhibitory effect of QU on CYP3A2 was compared with those of ketoconazole (Ket) and erythromycin (Ery). The mechanism of its inhibitory effect on CYP3A2 and CYP2E1 was derived from Lineweaver-Burk plots. Results HPLC methods were in good linear relationship with r〉0.999 1. Relative standard deviations for intra-day and inter-day were〈8.4%. Recovery of each analyte in the concentrations studied was between 91.1% and 107.6 %. QU (up to 8 μmol·L^-1) showed potent induction to CYP1A2 (338.1% of the negative control)while inhibited CYP2E1 (49.2% of the negative control) and CYP3A2 (60.3% of the negative control) activity. The magnitude of inhibitory effect for QU on CYP3A2 was between those for Ket and Ery (Ket〉QU〉Ery). QU exhibited competitive inhibition of CYP3A2 dextromethorphan N-demethylation reaction and expressed noncompetitive inhibition of CYP2E1 chlorzoxazone-6-hydroxylation reaction. Conclusion HPLC assay has been validated with precision and accuracy. QU is an effective inhibitor of several CYP isoforms. It may cause relevant drug-drug interactions with CYP3A substrates. As a plant flavonoid, QU has potential not only in molecular advantage but also in CYP450 module capability for further application in cancer chemotherapy.展开更多
Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacte...Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacterial cytosine deaminase), CPG2(carboxypeptidase G2) ,and PNP (purine nucleoside phosphorylase), have been known to bear close relations to cancer. Theirspecific expression and influence on the process of tumor initiation, promotion and progressionattract scientists to apply them as a biochemical marker of certain malignant tumor, a predictor ofresponse in cancer chemotherapy; to apply them to drug design, tumor prevention and as adjuvant toradiotherapy or surgery.展开更多
文摘Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable inhibitory mechanism of QU. Methods QU and specific substrate were concurrently incubated, with HPLC detection of the substrate metabolites for data analysis. The magnitude of inhibitory effect of QU on CYP3A2 was compared with those of ketoconazole (Ket) and erythromycin (Ery). The mechanism of its inhibitory effect on CYP3A2 and CYP2E1 was derived from Lineweaver-Burk plots. Results HPLC methods were in good linear relationship with r〉0.999 1. Relative standard deviations for intra-day and inter-day were〈8.4%. Recovery of each analyte in the concentrations studied was between 91.1% and 107.6 %. QU (up to 8 μmol·L^-1) showed potent induction to CYP1A2 (338.1% of the negative control)while inhibited CYP2E1 (49.2% of the negative control) and CYP3A2 (60.3% of the negative control) activity. The magnitude of inhibitory effect for QU on CYP3A2 was between those for Ket and Ery (Ket〉QU〉Ery). QU exhibited competitive inhibition of CYP3A2 dextromethorphan N-demethylation reaction and expressed noncompetitive inhibition of CYP2E1 chlorzoxazone-6-hydroxylation reaction. Conclusion HPLC assay has been validated with precision and accuracy. QU is an effective inhibitor of several CYP isoforms. It may cause relevant drug-drug interactions with CYP3A substrates. As a plant flavonoid, QU has potential not only in molecular advantage but also in CYP450 module capability for further application in cancer chemotherapy.
文摘Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacterial cytosine deaminase), CPG2(carboxypeptidase G2) ,and PNP (purine nucleoside phosphorylase), have been known to bear close relations to cancer. Theirspecific expression and influence on the process of tumor initiation, promotion and progressionattract scientists to apply them as a biochemical marker of certain malignant tumor, a predictor ofresponse in cancer chemotherapy; to apply them to drug design, tumor prevention and as adjuvant toradiotherapy or surgery.