几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能...几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。展开更多
针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方...针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方式使得信号极值点的分布更均匀,有效地抑制模态混叠问题的同时,亦保证了算法分解的顺序性.详细介绍了EPALIF方法的原理,同时构建仿真信号,将此方法与EMD、EEMD、CEEMD和ALIF方法进行分析和对比.结果表明PEALIF在分解能力、抑制模态混叠和抗噪声干扰等方面都具有一定的优越性.最后,将此方法应用在双半内圈轴承故障诊断中,实验结果表明PEALIF方法能获取更突出且易于辨识的故障特征信息,证实了该方法应用在轴承故障诊断分析上的实用性.展开更多
文摘几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。
文摘针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方式使得信号极值点的分布更均匀,有效地抑制模态混叠问题的同时,亦保证了算法分解的顺序性.详细介绍了EPALIF方法的原理,同时构建仿真信号,将此方法与EMD、EEMD、CEEMD和ALIF方法进行分析和对比.结果表明PEALIF在分解能力、抑制模态混叠和抗噪声干扰等方面都具有一定的优越性.最后,将此方法应用在双半内圈轴承故障诊断中,实验结果表明PEALIF方法能获取更突出且易于辨识的故障特征信息,证实了该方法应用在轴承故障诊断分析上的实用性.