期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
相位一致性指导的全参考全景图像质量评价 被引量:5
1
作者 夏雨蒙 王永芳 王闯 《中国图象图形学报》 CSCD 北大核心 2021年第7期1625-1636,共12页
目的全景图像的质量评价和传输、处理过程并不是在同一个空间进行的,传统的评价算法无法准确地反映用户在观察球面场景时产生的真实感受,针对观察空间与处理空间不一致的问题,本文提出一种基于相位一致性的全参考全景图像质量评价模型... 目的全景图像的质量评价和传输、处理过程并不是在同一个空间进行的,传统的评价算法无法准确地反映用户在观察球面场景时产生的真实感受,针对观察空间与处理空间不一致的问题,本文提出一种基于相位一致性的全参考全景图像质量评价模型。方法将平面图像进行全景加权,使得平面上的特征能准确反映球面空间质量畸变。采用相位一致性互信息的相似度获取参考图像和失真图像的结构相似度。接着,利用相位一致性局部熵的相似度反映参考图像和失真图像的纹理相似度。将两部分相似度融合可得全景图像的客观质量分数。结果实验在全景质量评价数据集OIQA(omnidirectional image quality assessment)上进行,在原始图像中引入4种不同类型的失真,将提出的算法与6种主流算法进行性能对比,比较了基于相位信息的一致性互信息和一致性局部熵,以及评价标准依据4项指标。实验结果表明,相比于现有的6种全景图像质量评估算法,该算法在PLCC(Pearson linear correlation coefficient)和SRCC(Spearman rank order correlation coefficient)指标上比WS-SSIM(weighted-to-spherically-uniform structural similarity)算法高出0.4左右,并且在RMSE(root of mean square error)上低0.9左右,4项指标最优,能够获得更好的拟合效果。结论本文算法解决了观察空间和映射空间不一致的问题,并且融合了基于人眼感知的多尺度互信息相似度和局部熵相似度,获得与人眼感知更为一致的客观分数,评价效果更为准确,更加符合人眼视觉特征。 展开更多
关键词 全景图像/视频 质量评价 人类视觉系统 相位一致性 结构相似度(SSIM) 纹理相似度
原文传递
基于注意力和反馈机制的HDR视频重建
2
作者 杨英杰 王永芳 张涵 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期56-67,共12页
对基于深度学习的高动态范围(high dynamic range,HDR)重建进行研究,提出一种基于注意力和反馈机制的HDR重建方法.首先,将时间上连续、循环曝光的3张图像作为网络的输入,通过引入注意力模块生成注意力图像,对获取的特征进行自适应的加权... 对基于深度学习的高动态范围(high dynamic range,HDR)重建进行研究,提出一种基于注意力和反馈机制的HDR重建方法.首先,将时间上连续、循环曝光的3张图像作为网络的输入,通过引入注意力模块生成注意力图像,对获取的特征进行自适应的加权,以优化网络的特征提取和减少鬼影现象的出现;然后,将反馈机制引入到网络中,进一步提高特征信息的利用率,优化网络在特征融合和重建方面的性能;最后,在L1损失函数的基础上,考虑色彩相似度损失函数和VGG(Visual Geometry Group)损失函数以增强重建后HDR图像的色彩表现及高频细节.实验结果表明,本方法不仅可获得更好的主观和客观重建质量,而且优于目前存在的主流算法. 展开更多
关键词 高动态范围重建 深度学习 注意力机制 反馈机制 损失函数
下载PDF
基于深度残差全卷积网络的Landsat 8遥感影像云检测方法 被引量:20
3
作者 张家强 李潇雁 +4 位作者 李丽圆 孙鹏程 苏晓峰 胡亭亮 陈凡胜 《激光与光电子学进展》 CSCD 北大核心 2020年第10期356-363,共8页
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度... 为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 展开更多
关键词 遥感 云检测 深度学习 语义分割 全卷积网络 残差网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部