期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv3的雾天场景行人车辆检测方法研究 被引量:1
1
作者 王启明 何梓林 +1 位作者 张栋林 毛作龙 《控制工程》 CSCD 北大核心 2024年第3期510-517,共8页
针对智能驾驶中动态目标检测易受雾天等恶劣天气影响,以及原始YOLOv3目标检测算法应用于行人车辆检测时精度低、定位准确率低及漏检率高等问题,提出一种基于改进YOLOv3和数据增强的雾天行人车辆检测方法。首先,以Cityscapes数据集为基础... 针对智能驾驶中动态目标检测易受雾天等恶劣天气影响,以及原始YOLOv3目标检测算法应用于行人车辆检测时精度低、定位准确率低及漏检率高等问题,提出一种基于改进YOLOv3和数据增强的雾天行人车辆检测方法。首先,以Cityscapes数据集为基础,通过大气散射模型及清晰图片的深度信息人工生成3种浓度的FoggyCityscapes,用以扩充样本数量。其次,通过改进K-means聚类算法生成适用于检测车辆与行人的先验框,同时,使用软非极大值抑制(softnon-maximumsuppression,Soft-NMS)优化对重叠目标的检测,进一步提高模型检测精度。实验结果表明,相较于原模型,该方法在3种浓度的FoggyCityscapes数据集上的平均精度均值(meanaverageprecision,m AP)分别提高了7.73%、13.22%和21.51%,能够快速准确地检测雾天场景的行人和车辆目标。 展开更多
关键词 目标检测 深度学习 数据增强 YOLO 雾天成像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部