网约车合乘出行可有效提高车辆运输效率,与常规网约车出行相比具有显著的碳减排潜力。然而,现实中网约车合乘出行能否真正减少碳排放受多方面因素影响,往往存在较大差异与不确定性。为识别碳减排潜力较大的网约车合乘订单,提出一种基于...网约车合乘出行可有效提高车辆运输效率,与常规网约车出行相比具有显著的碳减排潜力。然而,现实中网约车合乘出行能否真正减少碳排放受多方面因素影响,往往存在较大差异与不确定性。为识别碳减排潜力较大的网约车合乘订单,提出一种基于机器学习的网约车合乘出行碳减排状态预测模型,并解析其碳减排机理。首先,基于成都市真实的网约车合乘订单与轨迹数据,应用COPERT(COmputer Program to calculate Emissions from Road Transport)排放模型分别计算合乘出行碳排放量及其替代的独乘出行碳排放量,进而得到合乘出行相比独乘出行的碳减排量。然后,基于历史的合乘行程碳减排及其订单特征数据,训练XGBoost(eXtreme Gradient Boosting)模型以预测未来潜在合乘出行的碳减排状态。最后,采用ALE(Accumulated Local Effects)分析方法对预测模型进行特征变量解析,以识别影响合乘出行碳减排状态的关键因素。结果显示:研究区域内平均每次网约车合乘出行可减少碳排放307.23 g,但仍有15%的网约车合乘行程未能实现减碳;XGBoost模型可以有效预测网约车合乘出行的碳减排状态,并识别出绕路率、合乘数、重叠率是决定网约车合乘出行碳减排状态的三大关键指标。研究结论可为网约车平台优化合乘订单匹配算法提供理论依据,以实现更高效、更低碳的合乘出行,进一步提高网约车合乘的环境效益。展开更多
文摘网约车合乘出行可有效提高车辆运输效率,与常规网约车出行相比具有显著的碳减排潜力。然而,现实中网约车合乘出行能否真正减少碳排放受多方面因素影响,往往存在较大差异与不确定性。为识别碳减排潜力较大的网约车合乘订单,提出一种基于机器学习的网约车合乘出行碳减排状态预测模型,并解析其碳减排机理。首先,基于成都市真实的网约车合乘订单与轨迹数据,应用COPERT(COmputer Program to calculate Emissions from Road Transport)排放模型分别计算合乘出行碳排放量及其替代的独乘出行碳排放量,进而得到合乘出行相比独乘出行的碳减排量。然后,基于历史的合乘行程碳减排及其订单特征数据,训练XGBoost(eXtreme Gradient Boosting)模型以预测未来潜在合乘出行的碳减排状态。最后,采用ALE(Accumulated Local Effects)分析方法对预测模型进行特征变量解析,以识别影响合乘出行碳减排状态的关键因素。结果显示:研究区域内平均每次网约车合乘出行可减少碳排放307.23 g,但仍有15%的网约车合乘行程未能实现减碳;XGBoost模型可以有效预测网约车合乘出行的碳减排状态,并识别出绕路率、合乘数、重叠率是决定网约车合乘出行碳减排状态的三大关键指标。研究结论可为网约车平台优化合乘订单匹配算法提供理论依据,以实现更高效、更低碳的合乘出行,进一步提高网约车合乘的环境效益。