小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基...小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基础上,提出了一种面向小目标的多尺度快速区域卷积神经网络(faster-regions with convolutional neural network, Faster-RCNN)检测算法.根据卷积神经网络的特性,修改了Faster-RCNN的网络结构,使网络可以同时使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测任务的精度.同时,针对训练数据难以标记的问题,使用从搜索引擎上获取的数据来训练模型.因为这些训练数据与任务测试数据分布不同,又利用下采样和上采样的方法对目标高分辨率的训练图像进行转化,使训练图像和测试图像的特征分布更类似.实验结果表明:所提出的方法在小目标检测任务上的平均精度均值(mean average precision, mAP)可以比原始的Faster-RCNN提高约5%.展开更多
利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节...利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节点间由于多跳传输引起的能量空洞(energy hole)以及节点失效造成的传输链路中断等问题.MDC的移动性也为无线传感器网络的研究带来新的挑战.研究基于移动协助数据收集的无线传感器网络结构,分类总结了近年来提出的一些典型的基于MDC的算法和协议,着重讨论了MDC在网络能量、延迟、路由和传输等方面带来的性能变化.最后,进行了各种算法的比较性总结,针对传感器网络中MDC的研究提出了亟待解决的问题,并展望了其未来的发展方向.展开更多
测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测...测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测试预算不足以致不能执行完所有测试用例的测试场景.首先对TCP问题进行描述,并依次从源代码、需求和模型这3个角度出发对已有的TCP技术进行分类;然后对一类特殊的TCP问题(即测试资源感知的TCP问题)的已有研究成果进行总结;随后依次总结实证研究中常用的评测指标、评测数据集和缺陷类型对实证研究结论的影响;接着依次介绍TCP技术在一些特定测试领域中的应用,包括组合测试、事件驱动型应用测试、Web服务测试和缺陷定位等;最后对下一步工作进行展望.展开更多
随着位置社交网络(location-based social network,LBSN)的快速增长,兴趣点(point-ofinterest,POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来...随着位置社交网络(location-based social network,LBSN)的快速增长,兴趣点(point-ofinterest,POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来提高推荐质量,而忽视了利用兴趣点相关的评论信息.但是,现实中用户在LBSN中只对少数兴趣点进行签到,使得用户签到历史数据及其情景信息极其稀疏,这对兴趣点推荐来说是一个巨大的挑战.为此,提出了一种新的兴趣点推荐模型,称为GeoSoRev模型.该模型在已有的基于矩阵分解的经典推荐模型的基础上,融合关于兴趣点的评论信息、用户社交关联和地理信息这3个因素进行兴趣点推荐.基于2个来自Foursquare的真实数据集的实验结果表明,与其他主流的兴趣点推荐模型相比,GeoSoRev模型在准确率和召回率等多项评价指标上都取得了显著的提高.展开更多
文摘小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基础上,提出了一种面向小目标的多尺度快速区域卷积神经网络(faster-regions with convolutional neural network, Faster-RCNN)检测算法.根据卷积神经网络的特性,修改了Faster-RCNN的网络结构,使网络可以同时使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测任务的精度.同时,针对训练数据难以标记的问题,使用从搜索引擎上获取的数据来训练模型.因为这些训练数据与任务测试数据分布不同,又利用下采样和上采样的方法对目标高分辨率的训练图像进行转化,使训练图像和测试图像的特征分布更类似.实验结果表明:所提出的方法在小目标检测任务上的平均精度均值(mean average precision, mAP)可以比原始的Faster-RCNN提高约5%.
文摘利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节点间由于多跳传输引起的能量空洞(energy hole)以及节点失效造成的传输链路中断等问题.MDC的移动性也为无线传感器网络的研究带来新的挑战.研究基于移动协助数据收集的无线传感器网络结构,分类总结了近年来提出的一些典型的基于MDC的算法和协议,着重讨论了MDC在网络能量、延迟、路由和传输等方面带来的性能变化.最后,进行了各种算法的比较性总结,针对传感器网络中MDC的研究提出了亟待解决的问题,并展望了其未来的发展方向.
文摘测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测试预算不足以致不能执行完所有测试用例的测试场景.首先对TCP问题进行描述,并依次从源代码、需求和模型这3个角度出发对已有的TCP技术进行分类;然后对一类特殊的TCP问题(即测试资源感知的TCP问题)的已有研究成果进行总结;随后依次总结实证研究中常用的评测指标、评测数据集和缺陷类型对实证研究结论的影响;接着依次介绍TCP技术在一些特定测试领域中的应用,包括组合测试、事件驱动型应用测试、Web服务测试和缺陷定位等;最后对下一步工作进行展望.
文摘随着位置社交网络(location-based social network,LBSN)的快速增长,兴趣点(point-ofinterest,POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来提高推荐质量,而忽视了利用兴趣点相关的评论信息.但是,现实中用户在LBSN中只对少数兴趣点进行签到,使得用户签到历史数据及其情景信息极其稀疏,这对兴趣点推荐来说是一个巨大的挑战.为此,提出了一种新的兴趣点推荐模型,称为GeoSoRev模型.该模型在已有的基于矩阵分解的经典推荐模型的基础上,融合关于兴趣点的评论信息、用户社交关联和地理信息这3个因素进行兴趣点推荐.基于2个来自Foursquare的真实数据集的实验结果表明,与其他主流的兴趣点推荐模型相比,GeoSoRev模型在准确率和召回率等多项评价指标上都取得了显著的提高.