The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measu...The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells. The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 21573094,11274142,11474131 and 51502109the China Postdoctoral Science Foundation Funded Project under Grant Nos 2011M500927 and 2013T60319
文摘The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells. The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.