Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish...Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.展开更多
Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their s...Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.展开更多
Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate ...Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate capability.Herein,we report a new layered manganese-based cathode material,ZnMn_(3)O_(7)(ZMO),which possesses a large interlayer spacing of 4.8Åand allows the intercalation of~1.23 Zn-ions per formula unit(corresponding to a capacity of~170 mAh/g).Importantly,ZMO exhibits good cycling stability(72.9%capacity retention over 400 cycles),ultrafast-charging capability(73%state of charge in 1.5 min),and an ultrahigh power density(3510 W/kg at 88 Wh/kg).Through kinetic characterization,the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability.Furthermore,the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS.This work may shed light on the design of high-performance electrode materials for AZIBs.展开更多
基金financially supported by National Natural Science Foundation of China (22209133, 22272131, 21972111, 22211540712)Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1411)+1 种基金Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies。
文摘Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.
文摘Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.
基金supported by the Fujian Science and Technology Key Project(No.2021H0042)。
文摘Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate capability.Herein,we report a new layered manganese-based cathode material,ZnMn_(3)O_(7)(ZMO),which possesses a large interlayer spacing of 4.8Åand allows the intercalation of~1.23 Zn-ions per formula unit(corresponding to a capacity of~170 mAh/g).Importantly,ZMO exhibits good cycling stability(72.9%capacity retention over 400 cycles),ultrafast-charging capability(73%state of charge in 1.5 min),and an ultrahigh power density(3510 W/kg at 88 Wh/kg).Through kinetic characterization,the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability.Furthermore,the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS.This work may shed light on the design of high-performance electrode materials for AZIBs.