Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exi...Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.展开更多
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgra...A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.展开更多
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that...We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.展开更多
文摘Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.
基金Supported by National Natural Science Foundation of China (Grant No. 10671122) the first author is supported by Youth Foundation of Shanghai (Grant No. sdl10017) and also partly supported by Natural Science Foundation of Shanghai (Grant No. 10ZR1412500) the second author is partly supported by STCSM (Grant No. 09XD1402500)
文摘A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.
基金Partially supported by the NSF (10071035) of China.
文摘We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.
基金supported by the National Natural Science Foundation of China (10771095)the Guangxi Science Foundation(0832107,0991102)the Scientific Research Foundation of Guangxi Educational Committee (200707LX233)
基金Supported by National Natural Science Foundation(11161006)Guan-gxi Natural Science Foundation(2010GXNSFB013048,2011GXNSFA018139)Scientific Research Foundation of Guangxi Educational Committee(201012MS140)
基金supported by NSFC(Nos.11661014,11461010,11661013)the Guangxi Science Research and Technology Development Project(No.1599005-2-13)+1 种基金the Guangxi Natural Science Foundation(Nos.2016GXSFDA380017,2016GXNSFCA380014)the Scientific Research Fund of Guangxi Education Department(No.KY2015ZD075)