The morphology of urban areas plays a crucial role in determining solar potential,which directly affects photovoltaic capacity and the achievement of net-zero outcomes.This study focuses on the City of Melbourne to in...The morphology of urban areas plays a crucial role in determining solar potential,which directly affects photovoltaic capacity and the achievement of net-zero outcomes.This study focuses on the City of Melbourne to investigate the utilization of solar energy across different urban densities and proposes optimized morphologies.The analysis encompasses blocks with diverse population densities,examining medium and high-density areas.By utilizing a multi-objective genetic optimization approach,the urban morphology of these blocks is refined.The findings indicate that low-density blocks exhibit photovoltaic potential ranging from 1 to 6.6 times their total energy consumption.Medium and high-density blocks achieve photovoltaic potential levels approximately equivalent to 40%-85%of their overall energy consumption.Moreover,significant variations in photovoltaic potential are observed among different urban forms within medium and high-density blocks.An“elevated corners with central valley”prototype is proposed as an effective approach,enhancing the overall photovoltaic potential by approximately 14%.This study introduces novel analytical concepts,shedding light on the intricate relationship between urban morphologies and photovoltaic potential.展开更多
We investigate the topological properties of an antiferromagnetic(AFM)chain with an on-site periodic potential,considering the intrinsic spin–orbit coupling and an external Zeeman field along with the nanowire.Our re...We investigate the topological properties of an antiferromagnetic(AFM)chain with an on-site periodic potential,considering the intrinsic spin–orbit coupling and an external Zeeman field along with the nanowire.Our results indicate that Majorana zero modes(MZMs)can be observed by adjusting the strength of the periodic potential.We have calculated the energy spectrum,the wave-function and transport properties,and all these results support the existence of MZMs in the AFM chain.Additionally,multiple topological phase transitions occur as the strength of the periodic potential changes,and several regions support MZMs.展开更多
An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The ef...An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The effect of coupling on the corrosion process of the galvanically coupled carbon steel electrode was evaluated and compared with the self-corrosion process observed independently at the exposed and contact regions. Results obtained indicated that at an equal area ratio and uncoupled conditions, the corrosion rate is accelerated in the surface directly exposed to bulk solution compared to the bolt surface in contact with the nut. A coupling current was recorded when the exposed surface(BCSE) was electrically connected with the contact surface(CCSE);with the CCSE acting as the anode thereby suppressing the corrosion process in the exposed surface. By implication, the galvanic coupling between CCSE and BCSE increased the corrosion rate of CCSE. The diff erence in oxygen supply was responsible for the coupling effect observed in the system as there was no decrease in the solution pH. Moreover, varying the cathode-to-anode area( S c/S a) ratio significantly influenced the corrosion current density as increased S c/S a ratio resulted in an accelerated galvanic corrosion process. The corroded surfaces and interfaces were analysed using stereomicroscopy and scanning electron microscopy. X-ray diff ractometry was adopted for corrosion product characterization. The results obtained showed supportive evidence of the corrosion behaviour in carbon steel fasteners.展开更多
In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the r...In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or d_(Z-A), is formulated in the principal component space. The ability for d_(Z-A) to rate the damage potentials of strong motion records is evaluated through correlation of d_(Z-A) with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.展开更多
User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-tr...User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization(QPSO)and Fuzzy C-Means Clustering.The main idea is:as energymeters at different transformer areas exhibit different zero-crossing shift features,we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations.The proposed method contributes in three main ways.First,based on the fuzzy C-means clustering algorithm(FCM),the quantum particle swarm optimization(PSO)is introduced to optimize the FCM clustering center and kernel parameters.The optimized FCM algorithm can improve clustering accuracy and efficiency.Since easily falls into a local optimum,an improved PSO optimization algorithm(IQPSO)is proposed.Secondly,considering that traditional FCM cannot solve the linear inseparability problem,this article uses a FCM(KFCM)that introduces kernel functions.Combinedwith the IQPSOoptimization algorithm used in the previous step,the IQPSO-KFCM algorithm is proposed.Simulation experiments verify the superiority of the proposed method.Finally,the proposed method is applied to transformer detection.The proposed method determines the class members of transformers and meters in the actual transformer area,and obtains results consistent with actual user-transformer relations.This fully shows that the proposed method has practical application value.展开更多
针对塔里木油田深井、超深井上部地层泥页岩水化膨胀阻卡,下部地层温度高,常规水基钻井液性能调控、维护困难等问题,通过优选阳离子抑制剂CPI、阳离子包被剂CPH-1和CPH-2、阳离子降滤失剂CPF-1和CPF、阳离子封堵剂CPA等,形成了一套"零...针对塔里木油田深井、超深井上部地层泥页岩水化膨胀阻卡,下部地层温度高,常规水基钻井液性能调控、维护困难等问题,通过优选阳离子抑制剂CPI、阳离子包被剂CPH-1和CPH-2、阳离子降滤失剂CPF-1和CPF、阳离子封堵剂CPA等,形成了一套"零电位"水基钻井液体系。该体系阳离子浓度可达8 000 mg/L,其黏土颗粒的Zeta电位可达-10 m V左右,稍高于原地层条件下岩屑颗粒的Zeta电位,从而阻止电荷迁移,稳定井壁;在1.0~2.3g/cm3密度范围内,在80~180℃下,在很少处理剂加量下,体系均表现出良好的流变性和降失水能力;能抗20%盐、2%钙和5%黏土污染。该钻井液在塔里木油田已应用20余井,由钻井液引起的事故与复杂损失时间相比于传统水基钻井液减少10.2%,机械钻速提高14.9%,钻井周期缩短9.8%,为深井安全、快速、高效钻井提供了新的钻井液体系。展开更多
The pristine point of zero charge(p.p.z.c)and zeta potential as a function of pH of boehmite oxide/hydroxide(α-Al_(2)O_(3)·H_(2)O)have been determined for three filter media.The active component in the first two...The pristine point of zero charge(p.p.z.c)and zeta potential as a function of pH of boehmite oxide/hydroxide(α-Al_(2)O_(3)·H_(2)O)have been determined for three filter media.The active component in the first two filter media is boehmite nanofibers,only 2 nm in diameter and about 300 nm long.Boehmite nanofibers create high zeta potential(ζtrue≥46 mV)in aqueous solutions in the pH range of 3–8.The p.p.z.c.values were determined to be 11.60±0.15 for nanofibers grafted onto microglass fibers and 11.40±0.15 for agglomerated nanofibers.In the third filter media,a boehmite nanolayer in the form of monocrystalline oxide/hydroxide with a thickness of approximately 1.2 nm is electroadhesively deposited onto siliceous support material with large surface area of about 50 m^(2)/g,therefore forming a highly electropositive composite of boehmite nanolayer on the second highly electronegative solid.Boehmite’s oxide-hydroxide nanolayer surface creates high zeta potential(ζtrue≥50 mV)in aqueous solutions in the pH range of 3–8.The p.p.z.c.value was determined to be 11.38±0.15.The reported values are within accuracy,but they are much higher than the values reported in the literature.X-ray powder diffraction data were supplemented by microscopy,infrared spectroscopy in order to characterize fully synthetic boehmite surfaces.展开更多
文摘The morphology of urban areas plays a crucial role in determining solar potential,which directly affects photovoltaic capacity and the achievement of net-zero outcomes.This study focuses on the City of Melbourne to investigate the utilization of solar energy across different urban densities and proposes optimized morphologies.The analysis encompasses blocks with diverse population densities,examining medium and high-density areas.By utilizing a multi-objective genetic optimization approach,the urban morphology of these blocks is refined.The findings indicate that low-density blocks exhibit photovoltaic potential ranging from 1 to 6.6 times their total energy consumption.Medium and high-density blocks achieve photovoltaic potential levels approximately equivalent to 40%-85%of their overall energy consumption.Moreover,significant variations in photovoltaic potential are observed among different urban forms within medium and high-density blocks.An“elevated corners with central valley”prototype is proposed as an effective approach,enhancing the overall photovoltaic potential by approximately 14%.This study introduces novel analytical concepts,shedding light on the intricate relationship between urban morphologies and photovoltaic potential.
基金supported by the Hunan Provincial Natural Science Foundation of China(Nos.2020JJ4240,2018JJ2078)the Scientific Research Fund of Hunan Provincial Education Department(No.19A106,18C0699)the Postgraduate University-Level Research Programme of Jishou University(No.Jdy22043)。
文摘We investigate the topological properties of an antiferromagnetic(AFM)chain with an on-site periodic potential,considering the intrinsic spin–orbit coupling and an external Zeeman field along with the nanowire.Our results indicate that Majorana zero modes(MZMs)can be observed by adjusting the strength of the periodic potential.We have calculated the energy spectrum,the wave-function and transport properties,and all these results support the existence of MZMs in the AFM chain.Additionally,multiple topological phase transitions occur as the strength of the periodic potential changes,and several regions support MZMs.
基金financially supported by the National Natural Science Foundation of China(No.51801219)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019193,KGFZD-135-19-02)the National Key Research Development Program of China(No.2017YFB0702302)。
文摘An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The effect of coupling on the corrosion process of the galvanically coupled carbon steel electrode was evaluated and compared with the self-corrosion process observed independently at the exposed and contact regions. Results obtained indicated that at an equal area ratio and uncoupled conditions, the corrosion rate is accelerated in the surface directly exposed to bulk solution compared to the bolt surface in contact with the nut. A coupling current was recorded when the exposed surface(BCSE) was electrically connected with the contact surface(CCSE);with the CCSE acting as the anode thereby suppressing the corrosion process in the exposed surface. By implication, the galvanic coupling between CCSE and BCSE increased the corrosion rate of CCSE. The diff erence in oxygen supply was responsible for the coupling effect observed in the system as there was no decrease in the solution pH. Moreover, varying the cathode-to-anode area( S c/S a) ratio significantly influenced the corrosion current density as increased S c/S a ratio resulted in an accelerated galvanic corrosion process. The corroded surfaces and interfaces were analysed using stereomicroscopy and scanning electron microscopy. X-ray diff ractometry was adopted for corrosion product characterization. The results obtained showed supportive evidence of the corrosion behaviour in carbon steel fasteners.
文摘In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or d_(Z-A), is formulated in the principal component space. The ability for d_(Z-A) to rate the damage potentials of strong motion records is evaluated through correlation of d_(Z-A) with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.
基金supported by the National Natural Science Foundation of China(61671208).
文摘User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization(QPSO)and Fuzzy C-Means Clustering.The main idea is:as energymeters at different transformer areas exhibit different zero-crossing shift features,we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations.The proposed method contributes in three main ways.First,based on the fuzzy C-means clustering algorithm(FCM),the quantum particle swarm optimization(PSO)is introduced to optimize the FCM clustering center and kernel parameters.The optimized FCM algorithm can improve clustering accuracy and efficiency.Since easily falls into a local optimum,an improved PSO optimization algorithm(IQPSO)is proposed.Secondly,considering that traditional FCM cannot solve the linear inseparability problem,this article uses a FCM(KFCM)that introduces kernel functions.Combinedwith the IQPSOoptimization algorithm used in the previous step,the IQPSO-KFCM algorithm is proposed.Simulation experiments verify the superiority of the proposed method.Finally,the proposed method is applied to transformer detection.The proposed method determines the class members of transformers and meters in the actual transformer area,and obtains results consistent with actual user-transformer relations.This fully shows that the proposed method has practical application value.
文摘针对塔里木油田深井、超深井上部地层泥页岩水化膨胀阻卡,下部地层温度高,常规水基钻井液性能调控、维护困难等问题,通过优选阳离子抑制剂CPI、阳离子包被剂CPH-1和CPH-2、阳离子降滤失剂CPF-1和CPF、阳离子封堵剂CPA等,形成了一套"零电位"水基钻井液体系。该体系阳离子浓度可达8 000 mg/L,其黏土颗粒的Zeta电位可达-10 m V左右,稍高于原地层条件下岩屑颗粒的Zeta电位,从而阻止电荷迁移,稳定井壁;在1.0~2.3g/cm3密度范围内,在80~180℃下,在很少处理剂加量下,体系均表现出良好的流变性和降失水能力;能抗20%盐、2%钙和5%黏土污染。该钻井液在塔里木油田已应用20余井,由钻井液引起的事故与复杂损失时间相比于传统水基钻井液减少10.2%,机械钻速提高14.9%,钻井周期缩短9.8%,为深井安全、快速、高效钻井提供了新的钻井液体系。
文摘The pristine point of zero charge(p.p.z.c)and zeta potential as a function of pH of boehmite oxide/hydroxide(α-Al_(2)O_(3)·H_(2)O)have been determined for three filter media.The active component in the first two filter media is boehmite nanofibers,only 2 nm in diameter and about 300 nm long.Boehmite nanofibers create high zeta potential(ζtrue≥46 mV)in aqueous solutions in the pH range of 3–8.The p.p.z.c.values were determined to be 11.60±0.15 for nanofibers grafted onto microglass fibers and 11.40±0.15 for agglomerated nanofibers.In the third filter media,a boehmite nanolayer in the form of monocrystalline oxide/hydroxide with a thickness of approximately 1.2 nm is electroadhesively deposited onto siliceous support material with large surface area of about 50 m^(2)/g,therefore forming a highly electropositive composite of boehmite nanolayer on the second highly electronegative solid.Boehmite’s oxide-hydroxide nanolayer surface creates high zeta potential(ζtrue≥50 mV)in aqueous solutions in the pH range of 3–8.The p.p.z.c.value was determined to be 11.38±0.15.The reported values are within accuracy,but they are much higher than the values reported in the literature.X-ray powder diffraction data were supplemented by microscopy,infrared spectroscopy in order to characterize fully synthetic boehmite surfaces.