Uniform YF3 nanorods composed of nanoparticles were successfully prepared via a facile solvothermal method with ethanol as solvent and tetrabutyl ammonium fluoride(TBAF) as fluorine source.The products were characte...Uniform YF3 nanorods composed of nanoparticles were successfully prepared via a facile solvothermal method with ethanol as solvent and tetrabutyl ammonium fluoride(TBAF) as fluorine source.The products were characterized with powder X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The nanorods were with diameters of ca.60 nm and lengths ranging from 200 to 350 nm.Eu3+ and Tb3+ doped YF3 nanorods were also prepared and their photoluminescence properties were investigated.Cytotoxicity study revealed that these YF3 based nanorods were biocompatible.展开更多
The modification of NaYF4:Yb,Er(Tm) nanoparticles synthesized in the presence of an ionic surfactant is critical to their application in biological fields for better solubility and biocompatibility. In this work, NaYF...The modification of NaYF4:Yb,Er(Tm) nanoparticles synthesized in the presence of an ionic surfactant is critical to their application in biological fields for better solubility and biocompatibility. In this work, NaYF4:Yb,Er(Tm) was transformed from insoluble, inactive to hydrophilic, biocompatible via ligand exchange modification with polyacrylic acid (PAA). Ligand exchange was carried out at room temperature when a colloidal solution of NaYF4:Yb,Er(Tm) in tetrahydrofuran (THF) was treated with excess PAA. The PAA modified NaYF4:Yb,Er(Tm) nanoparticles got better surface properties but with declined inner up-conversion fluorescence. Generally, coating an analogous layer of material outside the core nanoparticles can improve the optical properties of the core. Accordingly, NaYF4:Yb,Er(Tm)/NaYF4 nanoparticles were synthesized before PAA modification to avoid the optical intensity decaying. The result of fluorescence test proved that the water soluble NaYF4:Yb,Er(Tm)/NaYF4/PAA nanocomposites had a sound up-conversion property compared with that of NaYF4:Yb,Er(Tm)/PAA. Furthermore, the up-conversion fluorescence property of the nanocomposite varied with the doping ratio of Er(Tm) to Yb and the possible mechanism for this change was also discussed.展开更多
In this paper, submicro-scaled YF3 particles with uniform rice-like morphologies were facilely synthesized by reacting yttrium nitrate with tetrabutylammonium fluoride via a solid-state reaction process at 50 °C ...In this paper, submicro-scaled YF3 particles with uniform rice-like morphologies were facilely synthesized by reacting yttrium nitrate with tetrabutylammonium fluoride via a solid-state reaction process at 50 °C for 12 h.The phase confirmation and morphology of the as-prepared YF3 particles were investigated by X-ray powder diffraction(XRD) and scanning electron microscopy(SEM).SEM results reveal that the YF3 submicroparticles are about 700 nm in length and 260 nm in width. Eu^3+ and Tb^3+ doped YF3 submicroparticles were also prepared with similar process and their photoluminescence properties were studied. Results demonstrate that the doping of Eu^3+ and Tb^3+ has slight effect on the morphologies of the product. Owing to the small average crystallite size or the low crystallinity of the product, the photoluminescence intensity of the Eu^3+ and Tb^3+ doped YF3 submicroparticles is very weak. Some characteristic peaks even cannot be observed in the emission spectrum.展开更多
基金Project supported by the China Postdoctoral Science Foundation (20100470841)the Natural Science Foundation of Jiangxi Province (2009GQH0057,2010BJB01100)
文摘Uniform YF3 nanorods composed of nanoparticles were successfully prepared via a facile solvothermal method with ethanol as solvent and tetrabutyl ammonium fluoride(TBAF) as fluorine source.The products were characterized with powder X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The nanorods were with diameters of ca.60 nm and lengths ranging from 200 to 350 nm.Eu3+ and Tb3+ doped YF3 nanorods were also prepared and their photoluminescence properties were investigated.Cytotoxicity study revealed that these YF3 based nanorods were biocompatible.
文摘The modification of NaYF4:Yb,Er(Tm) nanoparticles synthesized in the presence of an ionic surfactant is critical to their application in biological fields for better solubility and biocompatibility. In this work, NaYF4:Yb,Er(Tm) was transformed from insoluble, inactive to hydrophilic, biocompatible via ligand exchange modification with polyacrylic acid (PAA). Ligand exchange was carried out at room temperature when a colloidal solution of NaYF4:Yb,Er(Tm) in tetrahydrofuran (THF) was treated with excess PAA. The PAA modified NaYF4:Yb,Er(Tm) nanoparticles got better surface properties but with declined inner up-conversion fluorescence. Generally, coating an analogous layer of material outside the core nanoparticles can improve the optical properties of the core. Accordingly, NaYF4:Yb,Er(Tm)/NaYF4 nanoparticles were synthesized before PAA modification to avoid the optical intensity decaying. The result of fluorescence test proved that the water soluble NaYF4:Yb,Er(Tm)/NaYF4/PAA nanocomposites had a sound up-conversion property compared with that of NaYF4:Yb,Er(Tm)/PAA. Furthermore, the up-conversion fluorescence property of the nanocomposite varied with the doping ratio of Er(Tm) to Yb and the possible mechanism for this change was also discussed.
基金financially supported by the National Natural Science Foundation of China (Nos. 21201089 and 21261010)the Natural Science Foundation of Jiangxi Province (No. 2010BJB01100)+1 种基金the Project of Scientific and Technological Planning of Education Office of Jiangxi Province (No. GJJ11382)the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (No. KLCBTCMR2011-04)
文摘In this paper, submicro-scaled YF3 particles with uniform rice-like morphologies were facilely synthesized by reacting yttrium nitrate with tetrabutylammonium fluoride via a solid-state reaction process at 50 °C for 12 h.The phase confirmation and morphology of the as-prepared YF3 particles were investigated by X-ray powder diffraction(XRD) and scanning electron microscopy(SEM).SEM results reveal that the YF3 submicroparticles are about 700 nm in length and 260 nm in width. Eu^3+ and Tb^3+ doped YF3 submicroparticles were also prepared with similar process and their photoluminescence properties were studied. Results demonstrate that the doping of Eu^3+ and Tb^3+ has slight effect on the morphologies of the product. Owing to the small average crystallite size or the low crystallinity of the product, the photoluminescence intensity of the Eu^3+ and Tb^3+ doped YF3 submicroparticles is very weak. Some characteristic peaks even cannot be observed in the emission spectrum.