针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将...针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将其与原网络中的Mosaic数据增强方式相结合,提升网络的鲁棒性,并增强算法在不同调制格式信号间的泛化能力;其次,将自适应空间特征融合(ASFF)引入到Neck网络中,充分提取不同层次的特征,提高检测精度。实验结果表明,在混合信噪比条件下,所提改进算法的平均精度均值(mAP)达到了0.903,比原始YOLOv5s算法提升了0.7%,且在信噪比为20 dB时mAP高达0.993。展开更多
远程塔台由于其低成本高时效远程实时控制技术正越来越受到民航业界的青睐,其中运动目标自动检测和显示是远程塔台的核心技术,作为增强现实技术更好地为管制员提供服务。在分析远程塔台机场场面背景复杂、场面目标多为远场景、小目标等...远程塔台由于其低成本高时效远程实时控制技术正越来越受到民航业界的青睐,其中运动目标自动检测和显示是远程塔台的核心技术,作为增强现实技术更好地为管制员提供服务。在分析远程塔台机场场面背景复杂、场面目标多为远场景、小目标等特点基础上,提出了一种改进的You Only Look Once(YOLO)算法来实现远程塔台运动目标的检测,算法核心思想以Darknet-53为基础网络,多尺度预测边界框,以运动目标图像坐标的偏移量作为边框长宽的线性变换来实现边框的回归,改善了传统YOLO算法损失函数不同大小的边框未做区分的问题,提高了检测准确性和速度。机场真实数据实验表明,该算法能快速、准确的检测出远程塔台的运动目标,并准确的回归运动目标边框及分类。展开更多
文摘针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将其与原网络中的Mosaic数据增强方式相结合,提升网络的鲁棒性,并增强算法在不同调制格式信号间的泛化能力;其次,将自适应空间特征融合(ASFF)引入到Neck网络中,充分提取不同层次的特征,提高检测精度。实验结果表明,在混合信噪比条件下,所提改进算法的平均精度均值(mAP)达到了0.903,比原始YOLOv5s算法提升了0.7%,且在信噪比为20 dB时mAP高达0.993。
文摘远程塔台由于其低成本高时效远程实时控制技术正越来越受到民航业界的青睐,其中运动目标自动检测和显示是远程塔台的核心技术,作为增强现实技术更好地为管制员提供服务。在分析远程塔台机场场面背景复杂、场面目标多为远场景、小目标等特点基础上,提出了一种改进的You Only Look Once(YOLO)算法来实现远程塔台运动目标的检测,算法核心思想以Darknet-53为基础网络,多尺度预测边界框,以运动目标图像坐标的偏移量作为边框长宽的线性变换来实现边框的回归,改善了传统YOLO算法损失函数不同大小的边框未做区分的问题,提高了检测准确性和速度。机场真实数据实验表明,该算法能快速、准确的检测出远程塔台的运动目标,并准确的回归运动目标边框及分类。