期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
基于改进YOLOv5的目标检测算法研究 被引量:75
1
作者 邱天衡 王玲 +1 位作者 王鹏 白燕娥 《计算机工程与应用》 CSCD 北大核心 2022年第13期63-73,共11页
YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),... YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCALVOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。 展开更多
关键词 yolov5算法 特征金字塔(FPN) 注意力机制 目标检测
下载PDF
引入注意力机制的YOLOv5安全帽佩戴检测方法 被引量:61
2
作者 王玲敏 段军 辛立伟 《计算机工程与应用》 CSCD 北大核心 2022年第9期303-312,共10页
对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的... 对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意。将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求。 展开更多
关键词 安全帽佩戴检测 yolov5算法 加权双向特征金字塔 坐标注意力机制
下载PDF
改进YOLOv5的白细胞检测算法 被引量:30
3
作者 王静 孙紫雲 +1 位作者 郭苹 张龙妹 《计算机工程与应用》 CSCD 北大核心 2022年第4期134-142,共9页
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE。在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测... 针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE。在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以提升检验框检测的准确率。实验结果表明,对比标准的YOLOv5算法,YOLOv5-CHE算法的平均精度均值(mean average precision,mAP)、精准率和召回率分别提升了3.8个百分点、1.8个百分点和1.5个百分点,验证了该算法对白细胞检测具有很好的效果。 展开更多
关键词 白细胞检测 yolov5算法 坐标注意力机制 四尺度特征检测 损失函数
下载PDF
基于改进YOLOv5算法的复杂场景交通目标检测 被引量:15
4
作者 顾德英 罗聿伦 李文超 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第8期1073-1079,共7页
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用... 实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77 ms,可以实现实时检测的目标. 展开更多
关键词 深度学习 目标检测 yolov5算法 伪标签训练 嵌入式平台
下载PDF
基于CBAM和BiFPN改进YoloV5的渔船目标检测 被引量:14
5
作者 张德春 李海涛 +1 位作者 李勋 张雷 《渔业现代化》 CSCD 2022年第3期71-80,共10页
在渔港高点监控渔船目标的场景下,对渔船检测经常丢失和检测错误等问题,提出了一种基于改进YoloV5的渔船目标检测模型。首先通过Kmeans++算法对锚框重新聚类,选择适合渔船数据集的锚框尺寸;然后在YoloV5的骨干网络中融入卷积注意力模块(... 在渔港高点监控渔船目标的场景下,对渔船检测经常丢失和检测错误等问题,提出了一种基于改进YoloV5的渔船目标检测模型。首先通过Kmeans++算法对锚框重新聚类,选择适合渔船数据集的锚框尺寸;然后在YoloV5的骨干网络中融入卷积注意力模块(CBAM)注意力机制获取更多细节特征;再采用加权双向特征金字塔网络(BiFPN)代替原先的特征金字塔网络(FPN)+像素聚合网络(PAN)结构,快速进行多尺度特征融合;最后在检测尺度上去掉大目标的检测尺度,增加更小目标的检测尺度,改用新的三个检测尺度,提高了模型对小目标渔船的检测精度。结果显示:对比原YoloV5算法,改进后的算法精确度、召回率和平均精度均值均有所提升,分别提升29.5%、0.5%和4.5%,每秒检测帧数达到90.6,对渔船目标检测效果有大幅度改善。研究表明,改进后的YoloV5算法满足休渔期管控期间对渔船目标检测的准确性和实时性要求。 展开更多
关键词 渔船检测 yolov5算法 CBAM注意力机制 加权双向特征金字塔
下载PDF
面向小目标的YOLOv5安全帽检测算法 被引量:9
6
作者 吕宗喆 徐慧 +2 位作者 杨骁 王勇 王唯鉴 《计算机应用》 CSCD 北大核心 2023年第6期1943-1949,共7页
安全帽的佩戴是工人人身安全的有力保障。针对采集的安全帽佩戴图像目标密集、像素点小、检测难度大的特点,提出一种面向安全帽的YOLOv5小目标检测算法。首先,基于YOLOv5算法优化边界框回归损失函数和置信度预测损失函数的计算方式,以... 安全帽的佩戴是工人人身安全的有力保障。针对采集的安全帽佩戴图像目标密集、像素点小、检测难度大的特点,提出一种面向安全帽的YOLOv5小目标检测算法。首先,基于YOLOv5算法优化边界框回归损失函数和置信度预测损失函数的计算方式,以提高算法在训练中对密集小目标特征的学习效果;然后,引入切片辅助微调和切片辅助推理(SAHI)对输入网络的图像进行切片处理,使得小目标对象产生更大的像素区域,进而改善网络推理与微调的效果。实验采用了工业场景中包含密集安全帽小目标的数据集进行训练。实验结果表明,改进后的算法相较于原始YOLOv5算法能将精确率提升0.26个百分点,召回率提升0.38个百分点;并且所提算法的平均精确率均值(mAP)达到了95.77%,相较于原始YOLOv5算法等几种算法提升了0.46~13.27个百分点。结果验证了切片辅助微调和SAHI的引入可以提升密集场景下小目标检测识别的精确率和置信度,减少误检漏检的情况,有效满足安全帽佩戴检测的需求。 展开更多
关键词 安全帽佩戴检测 yolov5算法 损失函数 切片辅助微调 切片辅助推理 小目标检测
下载PDF
基于改进YOLOv5算法的珊瑚礁底栖生物识别方法 被引量:12
7
作者 吴睿 毕晓君 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第4期580-586,共7页
现有珊瑚礁底栖生物识别方法存在提取特征困难、实时性较差等问题,导致珊瑚礁底栖生物的识别精度不高。本文引入YOLOv5算法,通过设计跳转连接操作向深层网络传递清晰目标特征,解决了由真实近海图像的退化特性带来的底栖生物特征模糊的... 现有珊瑚礁底栖生物识别方法存在提取特征困难、实时性较差等问题,导致珊瑚礁底栖生物的识别精度不高。本文引入YOLOv5算法,通过设计跳转连接操作向深层网络传递清晰目标特征,解决了由真实近海图像的退化特性带来的底栖生物特征模糊的问题。同时,引入卷积注意力机制模块,解决了无效特征影响识别精度的问题。实验结果表明:本文提出的改进算法无论是识别精度还是识别速度均优于基准算法和目前较先进的单激发多框探测器等算法,从而证明了本文算法的有效性和先进性。 展开更多
关键词 yolov5算法 珊瑚礁生物识别 跳转连接 注意力机制 深度学习 珊瑚礁生态系统 特征金字塔结构 神经网络
下载PDF
基于YOLOv5的遥感图像目标检测 被引量:11
8
作者 董丽君 曾志高 +2 位作者 易胜秋 文志强 孟辰 《湖南工业大学学报》 2022年第3期44-50,共7页
为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干... 为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干网络提取到的特征层进行特征融合得到最优特征层,再对定位损失进行优化,采用CIoU loss作为定位损失函数,Focal loss作为分类损失函数;最后,在测试时对输入图片采用自适应图片缩放,以减少信息冗余,加快模型检测速率。该模型能有效捕捉图像特征,实现快速精准的目标定位。对公开10类地理空间物体检测数据集(NWPU-VHR 10)和RSOD数据集进行了训练测试,对比试验表明,优化模型mAP达到0.9896,比优化前的模型mAP提升了2.31%,与使用相同数据集的其他模型的最优值进行比较,其mAP提升了8.19%,该方法能有效提高遥感图像检测精度。 展开更多
关键词 遥感图像检测 yolov5算法 CIoU loss Focal loss 马赛克数据增强 自适应方法
下载PDF
基于Yolov5的密集场所人数估计方法 被引量:12
9
作者 王婧媛 方健 《吉林大学学报(信息科学版)》 CAS 2021年第6期682-687,共6页
为解决目前对高密度人群计数问题,提出了一种基于Yolov5的人群计数方法。其中输入层主要进行Mosaic数据增强,即自适应锚框和自适应的图片缩放技术;Backbone中Yolov5主要采用Focus和CSP(Cross Stage Partial)结构;Neck层采用SPP(Spatial ... 为解决目前对高密度人群计数问题,提出了一种基于Yolov5的人群计数方法。其中输入层主要进行Mosaic数据增强,即自适应锚框和自适应的图片缩放技术;Backbone中Yolov5主要采用Focus和CSP(Cross Stage Partial)结构;Neck层采用SPP(Spatial Pyramid Pooling)模块和FPN(Feature Pyramid Networks)+PAN(Pixel Aggregation Network)结构;输出端主要针对Bounding Box损失函数采用了CIOU;oss作为损失函数和DIOU;oss作为NMS(Non Maximum Suppression)的平均指标;最终输出训练结果。实验结果表明,该方法能有效提高人群计数的精度。 展开更多
关键词 人群计数 Mosaic数据增强 yolov5算法 Focus和CSP结构
下载PDF
基于YOLOv5的林业有害生物检测与识别 被引量:10
10
作者 孙丽萍 谭少亨 +1 位作者 周宏威 邹青池 《森林工程》 北大核心 2022年第5期104-109,120,共7页
林业生态环境监测建设是林业生态健康可持续发展的迫切需求,是森林资源保护、生态文明建设和林业有害生物防控体系提升的关键。快速、准确、有效地检测林业有害生物能够遏制病虫害蔓延,促进森林病虫害综合治理,减轻对林业生产和生态环... 林业生态环境监测建设是林业生态健康可持续发展的迫切需求,是森林资源保护、生态文明建设和林业有害生物防控体系提升的关键。快速、准确、有效地检测林业有害生物能够遏制病虫害蔓延,促进森林病虫害综合治理,减轻对林业生产和生态环境建设的危害。为此提出一种深度学习方法,利用当前强大的目标检测算法YOLOv5来实现林业有害生物的检测与识别,针对害虫图像中经常出现重叠和遮挡物体问题,采用DIoU_NMS算法对目标框进行选择,增强被遮挡害虫的检测识别准确率。试验结果表明,YOLOv5算法模型能够有效识别数据集中包含的9种林业有害生物,精确度达到了0.973,召回率达到了0.929,均值平均精度(mean Average Precision, mAP)达到了0.942。与YOLOv3和Faster-RCNN相比,mAP比YOLOv3高0.04,比Faster-RCNN高0.087,充分显现出该模型的识别精度高,且实时性好,鲁棒性强。 展开更多
关键词 林业害虫 识别 检测 yolov5算法 准确率
下载PDF
基于改进YOLOv5的输电线路鸟巢缺陷检测方法 被引量:6
11
作者 赵霖 王素珍 +1 位作者 邵明伟 许浩 《电子测量技术》 北大核心 2023年第3期157-165,共9页
鸟巢侵占是输电线路经常发生的一个故障情况。鸟类在铁塔上筑巢将会影响铁塔的绝缘性能,造成跳闸事故的发生。传统的输电线路鸟巢识别方法效率低且安全性不足。为此,本文提出了一种改进YOLOv5模型的输电线路鸟巢检测算法。通过在主干网... 鸟巢侵占是输电线路经常发生的一个故障情况。鸟类在铁塔上筑巢将会影响铁塔的绝缘性能,造成跳闸事故的发生。传统的输电线路鸟巢识别方法效率低且安全性不足。为此,本文提出了一种改进YOLOv5模型的输电线路鸟巢检测算法。通过在主干网络中加入CBAM注意力模块,以较小的计算代价提升主干网络的特征提取能力。在颈部网络中引入自适应特征融合模块替换原始结构,加强多尺度特征融合效果。使用更加稳定和平滑的Mish激活函数作为激活函数,以提升分类精度和泛化能力。实验结果表明,相较于原始YOLOv5s模型,改进方法在召回率以及平均精度均值方面分别提升4.4%和2.3%。对于遮挡目标以及远近距离目标均表现出良好的性能,验证了改进方法的有效性。 展开更多
关键词 鸟巢缺陷检测 yolov5算法 CBAM 自适应特征融合 Mish
下载PDF
基于YOLOv5算法的无人机电力巡检快速图像识别 被引量:9
12
作者 苏凯第 赵巧娥 《电力科学与工程》 2022年第4期43-48,共6页
针对图像识别算法硬件资源消耗大、识别速度慢的问题,基于YOLOv5算法设计了专用于电力巡检无人机的绝缘子目标检测模型。对算法中卷积操作模块和残差模块进行了改进,通过增加卷积层数来加深算法的学习深度。为了提高训练速度,采用多次... 针对图像识别算法硬件资源消耗大、识别速度慢的问题,基于YOLOv5算法设计了专用于电力巡检无人机的绝缘子目标检测模型。对算法中卷积操作模块和残差模块进行了改进,通过增加卷积层数来加深算法的学习深度。为了提高训练速度,采用多次循环神经网络训练法实现了对数据集的学习训练。模型的单张图片识别速度最快为0.061 s,绝缘子识别精度最高达到98.9%。结果表明,在消耗较少硬件计算资源的前提下,该模型可以直接对航拍采集到的图像进行处理,实现快速识别,可以满足电力无人机巡检过程中图像实时处理的要求。 展开更多
关键词 电力巡检 无人机 绝缘子 图像识别 yolov5算法 输电线路
下载PDF
基于优化CBAM改进YOLOv5的农作物病虫害识别 被引量:6
13
作者 王昕 董琴 杨国宇 《计算机系统应用》 2023年第7期261-268,共8页
针对多种农作物病虫害图像,在自然环境下因虫害种类繁多,小目标特征相似的技术问题,导致检测困难难以达到令人满意的精度.本文提出了一种自然背景下加强局部特征和全局特征信息融合的害虫检测识别模型YOLOv5-EB,在公开的大规模害虫数据... 针对多种农作物病虫害图像,在自然环境下因虫害种类繁多,小目标特征相似的技术问题,导致检测困难难以达到令人满意的精度.本文提出了一种自然背景下加强局部特征和全局特征信息融合的害虫检测识别模型YOLOv5-EB,在公开的大规模害虫数据集IP102上进行实验,结果表明该研究比YOLOv5模型精确度提高了5个百分点.引入一维卷积替换CBAM中通道注意力的MLP操作,优化了通道注意力经过全局处理后容易忽略通道内信息交互的问题;其次使用6×6卷积替换Focus操作,来增强提取害虫特征的能力.实验结果表明,对害虫进行检测时,YOLOv5-EB的平均精度值达到了87%,与Faster R-CNN、EfficientDet、YOLOv3、YOLOv4、YOLOv5模型相比,不仅有效提高了作物害虫图像的识别性能,而且有效提高了检测速度.研究表明,YOLOv5-EB算法满足对多种农作物病虫害目标检测的准确性和实时性要求. 展开更多
关键词 yolov5算法 CBAM 病虫害检测 IP102 目标识别 深度学习
下载PDF
基于改进YOLOv5+DeepSort算法模型的交叉路口车辆实时检测 被引量:4
14
作者 贾志 李茂军 李婉婷 《计算机工程与科学》 CSCD 北大核心 2023年第4期674-682,共9页
针对传统目标检测跟踪算法检测精度低、鲁棒性差的缺点,以及交叉路口图像视频资源冗余的现象和车辆密集程度高的特点,提出了一种基于改进YOLOv5和DeepSort算法模型的交叉路口实时车流量检测方法,在MS COCO和BDD100k相结合的数据集上,采... 针对传统目标检测跟踪算法检测精度低、鲁棒性差的缺点,以及交叉路口图像视频资源冗余的现象和车辆密集程度高的特点,提出了一种基于改进YOLOv5和DeepSort算法模型的交叉路口实时车流量检测方法,在MS COCO和BDD100k相结合的数据集上,采用改进的YOLOv5算法模型实现视频小目标车辆检测,利用深度学习多目标跟踪算法DeepSort对检测的车辆进行实时跟踪计数,实现了交叉路口监控端对端的实时车流量检测。通过分析比较不同参数的模型,最终选定了YOLOv5m模型。实验结果表明,该方法在复杂环境、车辆遮挡和目标密集程度高等环境下检测速度更加快,对车辆的检测效果更好,平均准确度达到96.6%。该方法完全满足目标实时性检测的要求,能充分满足交叉路口车辆检测的有效性,满足实际需要的使用需求。 展开更多
关键词 yolov5算法 车辆检测 DeepSort算法 目标检测 实时检测
下载PDF
基于改进YOLOv5的火焰检测方法 被引量:4
15
作者 陈露萌 曹彦彦 +1 位作者 黄民 谢鑫钢 《计算机工程》 CAS CSCD 北大核心 2023年第8期291-301,309,共12页
现有基于图像的火焰检测方法难以兼顾实时性和准确性,且缺乏对小火焰目标精准识别的能力,无法有效应对小火点灭火等应用场景。YOLOv5算法与传统主流算法相比在检测的实时性上有很大优势,为提升火焰检测精度,提出一种基于改进YOLOv5的火... 现有基于图像的火焰检测方法难以兼顾实时性和准确性,且缺乏对小火焰目标精准识别的能力,无法有效应对小火点灭火等应用场景。YOLOv5算法与传统主流算法相比在检测的实时性上有很大优势,为提升火焰检测精度,提出一种基于改进YOLOv5的火焰实时检测方法。针对YOLOv5模型进行改进:在特征提取部分嵌入协同注意力机制模块,在不损失特征信息的情况下减少特征冗余,以帮助模型更精确地定位火焰特征;在特征融合部分增加一个专门针对小火焰目标的检测层,并添加对应的特征提取及特征融合模块,以帮助模型有效获取感受野小于8×8像素的火焰特征;在损失函数的计算部分使用α-CIoU作为新的边界框损失函数,以提升模型的收敛速度和对小数据集的鲁棒性。此外,通过模型预训练和迁移学习的方法对火焰检测模型各层结构的权重参数进行初始化,防止梯度消失,提升训练效果。实验结果表明,改进后的火焰检测模型检测精度为96.6%,较YOLOv5原始模型提升7.4个百分点,并且检测速度达到68帧/s,模型大小仅15.4 MB,在大幅提升精度的基础上能够同时满足消防灭火机器人对火焰检测实时性和轻量化的要求。 展开更多
关键词 火焰检测 注意力机制 特征融合 yolov5算法 边界损失函数
下载PDF
基于YOLOv5算法的人体跌倒检测系统设计 被引量:7
16
作者 周洪成 杨娟 徐志国 《金陵科技学院学报》 2022年第2期22-29,共8页
针对老人、儿童、残障人士群体存在的跌倒风险,提出了一种基于YOLOv5算法的视频图像人体跌倒检测方法。该方法通过CSI摄像头采集视频数据,对视频数据进行训练和验证,进而判断目标人物的动作姿态,连接树莓派的WiFi模块将动作姿态信息发... 针对老人、儿童、残障人士群体存在的跌倒风险,提出了一种基于YOLOv5算法的视频图像人体跌倒检测方法。该方法通过CSI摄像头采集视频数据,对视频数据进行训练和验证,进而判断目标人物的动作姿态,连接树莓派的WiFi模块将动作姿态信息发送到监护人手机上,提醒监护人对跌倒人员进行及时救治,从而提高了救援效率。实验结果表明:1)YOLOv5算法对站立和跌倒动作的识别精确度均较高,而对下蹲动作的识别精确度相对较低;2)光线充足的环境中图片的置信度要高于昏暗环境中图片的置信度;3)YOLOv5算法检测人体动作的速率和精确度高于Faster R-CNN算法。 展开更多
关键词 人体跌倒 检测系统 树莓派 yolov5算法
下载PDF
基于改进YOLVOv5s的X射线图像粘接缺陷实时检测 被引量:4
17
作者 赵子文 金永 +2 位作者 陈友兴 吴其洲 王召巴 《国外电子测量技术》 北大核心 2023年第4期181-186,共6页
为了兼顾火箭弹非金属粘贴结构缺陷的检测速度和准确率,提出一种基于改进YOLOv5s的X射线图像火箭弹缺陷检测算法。该算法在YOLOv5s的基础上使用深度分离卷积重新设计特征提取网络中Bottleneck结构,以此改进C3模块,通过减少模型参数数量... 为了兼顾火箭弹非金属粘贴结构缺陷的检测速度和准确率,提出一种基于改进YOLOv5s的X射线图像火箭弹缺陷检测算法。该算法在YOLOv5s的基础上使用深度分离卷积重新设计特征提取网络中Bottleneck结构,以此改进C3模块,通过减少模型参数数量,提高运行速度。然后分别在特征提取网络的Focus结构后和Neck层的卷积和上采样之前加入卷积模块的注意力机制模块(CBAM),用来提高模型对有效特征提取,使模型更加关注小目标,力图保持运行速度的同时提高检测精度。实验结果表明,该算法在自制的火箭弹粘贴缺陷数据集上测试的平均精度均值(mAP)达到86.40%,比原始模型提高6.44%,帧率为32 fps;相比SSD、YOLOX-Tiny网络算法,该模型在检测速度和检测精度上有着出色的综合表现,能够针对火箭弹非金属粘接结构缺陷进行高效的检测。 展开更多
关键词 yolov5算法 X射线图像 注意力机制 深度可分离卷积
下载PDF
基于改进的YOLOv5的车辆检测模型研究 被引量:4
18
作者 葛雯 何卓颖 屈乐乐 《电脑与信息技术》 2023年第6期19-22,共4页
针对YOLOv5模型在复杂交通场景下进行车辆检测存在检测速度慢、误差检测严重,小物体识别困难等问题,提出了一种模型收敛速度快、目标框准确率高的新模型YOLOv5-Ours。首先,采用了双向特征金字塔网络(BiFPN)结构,通过利用多尺度小对象细... 针对YOLOv5模型在复杂交通场景下进行车辆检测存在检测速度慢、误差检测严重,小物体识别困难等问题,提出了一种模型收敛速度快、目标框准确率高的新模型YOLOv5-Ours。首先,采用了双向特征金字塔网络(BiFPN)结构,通过利用多尺度小对象细粒度特征来提高识别精度,以挖掘不同画面的细粒度特征;其次,利用空间金字塔池快速(SPPF)结构和ELU激活函数的复合结构,实现了对目标快速且准确的检测。实验结果表明,与其他算法相比,该算法检测速度更快,精度更高,具有良好的鲁棒性。 展开更多
关键词 yolov5算法 双向特征金字塔 SPPF 车辆目标检测
下载PDF
基于改进YOLOv5+DeepSort的柑橘果实识别与计数研究 被引量:4
19
作者 庄昊龙 周嘉灏 +2 位作者 林毓翰 彭海深 林宏宇 《南方农机》 2023年第15期9-13,共5页
【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑... 【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑橘种植园中多场景拍摄的5926张图片作为训练集、738张图片作为验证集、608张图片作为测试集,采用DeepSort算法结合改进YOLOv5算法的方式,通过在主干部分加入SE注意力机制以实现对算法的改进,从而提高对柑橘果实的识别效果;在柑橘果实计数部分,主要采用DeepSort算法给予每个柑橘果实单独的ID编号以实现对柑橘果实的计数。【结果】改进后的YOLOv5算法对柑橘果实的平均识别准确率为93.712%,相比改进前的CenterNet算法、EfficientDet算法、SSD算法、YOLOv4算法、YOLOX算法,平均识别准确率提升了1.354个百分点,并且精确度和召回率也有一定的提升,结合DeepSort算法后对柑橘果实的平均多目标跟踪准确率为88.465%,可较准确地实现对柑橘果实的计数。【结论】DeepSort算法具有提升目标被环境等其他因素遮挡情况下的计数效果的优点,加入SE注意力机制对YOLOv5算法进行改进,对柑橘果实具有更好的识别效果。 展开更多
关键词 yolov5算法 DeepSort算法 SE注意力机制 柑橘果实
下载PDF
基于YOLOv5算法的无人机伤员搜救系统设计 被引量:1
20
作者 廖骏明 徐逸晖 +3 位作者 郑潞 郑善豪 卓伟豪 廖绍成 《科技创新与应用》 2024年第1期156-159,共4页
无人机伤员搜救系统是一种利用无人机在灾难现场搜索,并基于高清相机图像定位伤员的技术,该方法可以高效搜索受伤或者昏迷的伤员,提高搜救效率、减少救援人员的风险。该文介绍一种基于YOLOv5目标检测算法的无人机伤员搜救系统,该系统使... 无人机伤员搜救系统是一种利用无人机在灾难现场搜索,并基于高清相机图像定位伤员的技术,该方法可以高效搜索受伤或者昏迷的伤员,提高搜救效率、减少救援人员的风险。该文介绍一种基于YOLOv5目标检测算法的无人机伤员搜救系统,该系统使用卷积神经网络模型,能够实现对伤员的目标检测,并使用PyQt5框架设计图形用户界面,将关键图像和文本信息显示在屏幕上,便于搜救人员开展工作。介绍四旋翼无人机的硬件组成、YOLO算法的原理、神经网络模型训练和GUI软件开发的过程,并模拟伤员拍摄照片进行识别实验,验证该系统的有效性和可行性,为无人机伤员搜救技术的发展提供一种新的思路和方法。 展开更多
关键词 无人机 目标检测 PyQt5 yolov5算法 伤员搜救
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部