This experiment was conducted to investigate the effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile...This experiment was conducted to investigate the effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish(Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets(42%protein and 9% lipid) were formulated to contain graded levels of arginine(2.44%, 2.64%, 2.81%, 3.01% and3.23% of diet), by supplementing L-Arginine HCI. Seven hundred juvenile yellow catfish with an initial average body weight of 1.13 ± 0.02 g were randomly divided into 5 groups with 4 replicates of 35 fish each and each group was fed one of the diets. After 56 d feeding, fish were exposed to 100 mg/L of ammonia-nitrogen for 72 h. The results showed that weight gain(WG) and specific growth rate(SGR) in2.64% and 2.81% groups were significantly higher than those in 3.23% group(P < 0.05). The feed conversation ratio(FCR) in 2,64%, 2,81% and 3.01% groups was significantly decreased when compared with3,23% group. The protein efficiency ratio(PER) in 2.64% group was significantly higher than that in 2.44%and 3.23% groups(P < 0.05). The condition factor(CF) of fish was significantly higher in 2.81% group than that in 2,44% group(P < 0.05). Dietary arginine levels had no significant effect on hepatosomatic index(HSI), viscerosomatic index(VSI), and whole-body dry matter, crude protein, crude lipid, ash contents, as well as serum total protein(TP), triglyceride(TG), glucose(GLU), urea nitrogen(UN) contents and aspartate aminotransferase(AST), alanine aminotransferase(ALT) activities(P> 0.05). After the fish were challenged to ammonia-nitrogen for 72 h, their cumulative mortality rate in 2.81% group was significantly lower than that in 2.44% group(P < 0.05). The results suggested that dietary arginine level at 2.81%could optimize anti-ammonia-nitrogen stress ability of juvenile yellow catfish and a level of 3.23%arginine seemed to depress the growth performance of fish and decreased their tolerance to the ammonia-nitrogen s展开更多
基金supported by the National Natural Science Foundation of China (31402307)the construction of public service platform for the evaluation of the value of aquatic feed and feed additives in Guangdong Province(2015A040404033)
文摘This experiment was conducted to investigate the effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish(Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets(42%protein and 9% lipid) were formulated to contain graded levels of arginine(2.44%, 2.64%, 2.81%, 3.01% and3.23% of diet), by supplementing L-Arginine HCI. Seven hundred juvenile yellow catfish with an initial average body weight of 1.13 ± 0.02 g were randomly divided into 5 groups with 4 replicates of 35 fish each and each group was fed one of the diets. After 56 d feeding, fish were exposed to 100 mg/L of ammonia-nitrogen for 72 h. The results showed that weight gain(WG) and specific growth rate(SGR) in2.64% and 2.81% groups were significantly higher than those in 3.23% group(P < 0.05). The feed conversation ratio(FCR) in 2,64%, 2,81% and 3.01% groups was significantly decreased when compared with3,23% group. The protein efficiency ratio(PER) in 2.64% group was significantly higher than that in 2.44%and 3.23% groups(P < 0.05). The condition factor(CF) of fish was significantly higher in 2.81% group than that in 2,44% group(P < 0.05). Dietary arginine levels had no significant effect on hepatosomatic index(HSI), viscerosomatic index(VSI), and whole-body dry matter, crude protein, crude lipid, ash contents, as well as serum total protein(TP), triglyceride(TG), glucose(GLU), urea nitrogen(UN) contents and aspartate aminotransferase(AST), alanine aminotransferase(ALT) activities(P> 0.05). After the fish were challenged to ammonia-nitrogen for 72 h, their cumulative mortality rate in 2.81% group was significantly lower than that in 2.44% group(P < 0.05). The results suggested that dietary arginine level at 2.81%could optimize anti-ammonia-nitrogen stress ability of juvenile yellow catfish and a level of 3.23%arginine seemed to depress the growth performance of fish and decreased their tolerance to the ammonia-nitrogen s