Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discha...Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)- linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.展开更多
Xylose reductase (EC 1.1.1.21) of Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain, was partially purified by reversed micelles and characterized, an 8.1 fold purification factor being obtained. The...Xylose reductase (EC 1.1.1.21) of Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain, was partially purified by reversed micelles and characterized, an 8.1 fold purification factor being obtained. The XR present in the crude extract exhibited its highest specific activity at pH 6.0 and 40℃, while in that obtained by reverse micelles, this occurs at pH 6.0 and 30℃. XR before and after extraction is stable within a range of 30 to 40℃, pH 7 after one hour of incubation under these conditions. After two months’storage at –18℃, the enzyme obtained by reverse micelles lost 76.60% specific activity. The estimated molecular weight by PAGE-SDS was 32.42 kD. KM for xylose was higher for the XR extracted by reverse micelles (0.026 M) than that obtained for the enzyme before extraction (0.0059 M), while KM for cofactor NADPH was lower after than before extraction (1.85 mM to 12.0 mM respectively). There was no activity with NADH as a cofactor. Variations in pH and temperature optima, as well as kinetic parameters before and after partial XR purification by reverse micelles are probably due to an alteration in enzyme molecule structure caused by the solvents used during extraction.展开更多
This work evaluated the effect of dissolved oxygen and the initial inoculum concentration on xylose reductase (XR) production by Candida guilliermondii from sugarcane bagasse hemicellulosic hydrolysate. Both the param...This work evaluated the effect of dissolved oxygen and the initial inoculum concentration on xylose reductase (XR) production by Candida guilliermondii from sugarcane bagasse hemicellulosic hydrolysate. Both the parameters were studied under an experimental design 22 with triplicate at central point. The statistical analysis of the results indicated a significant negative effect on XR production from the variable inoculum. The variable dissolved oxygen also showed a negative effect on XR production. We found the maximum enzyme activity (2.5 U?mg?1) when both the factors were applied at their lowest levels. The yeast showed to be potentially capable for xylose reductase production when sugarcane bagasse hemicellulosic hydrolysate was used as carbon source. Also, the results presented important information for further optimization of xylose reductase attainment.展开更多
基金supported by National Natural Science Foundation of China(No.20576018)
文摘Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)- linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.
文摘Xylose reductase (EC 1.1.1.21) of Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain, was partially purified by reversed micelles and characterized, an 8.1 fold purification factor being obtained. The XR present in the crude extract exhibited its highest specific activity at pH 6.0 and 40℃, while in that obtained by reverse micelles, this occurs at pH 6.0 and 30℃. XR before and after extraction is stable within a range of 30 to 40℃, pH 7 after one hour of incubation under these conditions. After two months’storage at –18℃, the enzyme obtained by reverse micelles lost 76.60% specific activity. The estimated molecular weight by PAGE-SDS was 32.42 kD. KM for xylose was higher for the XR extracted by reverse micelles (0.026 M) than that obtained for the enzyme before extraction (0.0059 M), while KM for cofactor NADPH was lower after than before extraction (1.85 mM to 12.0 mM respectively). There was no activity with NADH as a cofactor. Variations in pH and temperature optima, as well as kinetic parameters before and after partial XR purification by reverse micelles are probably due to an alteration in enzyme molecule structure caused by the solvents used during extraction.
文摘This work evaluated the effect of dissolved oxygen and the initial inoculum concentration on xylose reductase (XR) production by Candida guilliermondii from sugarcane bagasse hemicellulosic hydrolysate. Both the parameters were studied under an experimental design 22 with triplicate at central point. The statistical analysis of the results indicated a significant negative effect on XR production from the variable inoculum. The variable dissolved oxygen also showed a negative effect on XR production. We found the maximum enzyme activity (2.5 U?mg?1) when both the factors were applied at their lowest levels. The yeast showed to be potentially capable for xylose reductase production when sugarcane bagasse hemicellulosic hydrolysate was used as carbon source. Also, the results presented important information for further optimization of xylose reductase attainment.