This article reports the petrography and mineral chemistry of dunite xenoliths and olivine xenocrysts entrained by the Early Cretaceous Xi'anli (西安里) hornblende (Hb)-gahbros from the southern Taihang (太行) ...This article reports the petrography and mineral chemistry of dunite xenoliths and olivine xenocrysts entrained by the Early Cretaceous Xi'anli (西安里) hornblende (Hb)-gahbros from the southern Taihang (太行) Mountains, with the aim of constraining the nature of the Mesozoic lithospheric mantle in Central China. Rounded dunite xenoliths are 1-3 cm3 in size and display porphyroelastic, tabular, and protogranular textures. Chromite with Cr#=60-89 is common in the xenoliths. Oilvine xenocrysts of 4-6 mm in size are also found in the Hb-gabbros. Orthopyroxene reaction rims are commonly observed around olivine xenocrysts or between dunite xenoliths and host rocks. The porphyroclastic olivines within dunite xenoliths and olivine xenoerysts have kink bands and Mg#=83-94. The Mg# of olivine cores and rims are 89-94 (average, 90) and 83-86 (average, 84.4), respectively. The CaO contents of all olivines from the xenoliths and xenocrysts are less than 0.1 wt.%, suggesting a Hthospheric mantle origin. The Ca content (214 ppm-818 ppm) and Ti content (15 ppm-137 ppm) in the xenoliths and xenocrysts are similar to those of olivines from the dunite xenoliths, but are much higher than those of olivines from harzburgite and lherzolite xenoliths in the Fushan (符山) intrusion. This finding implies that the xenoliths and xenocrysts may have originated from harzburgites or lherzolites that were intensively modified by silica-rich melts. This result, combined with high Mg# (92-94) of olivine cores from the dunite xenoliths and xenocrysts, indicates that these ofivine xenocrysts and dunite xenoliths could represent the residue of ancient (Archean or Paleopro. terozoic) lithospheric mantle and might have experienced the same intensive modification by silica-rich melts as the host magma, resulting in enrichment in MgO and SiO2.展开更多
It is known that large amounts of Cenozoic high potassium volcanic rocks occur on the Tibetan plateau. The question is where do those high potassium magmas come from? Since the plateau is being compressed by subductio...It is known that large amounts of Cenozoic high potassium volcanic rocks occur on the Tibetan plateau. The question is where do those high potassium magmas come from? Since the plateau is being compressed by subduction and collision from the surrounding continents,it is a puzzle for us what is the formational environment and tectonic setting of these volcanic rocks? In particular,what is the relationship between these special rocks and formation and uplift of the plateau? We recently carried out an investigation on these Cenozoic volcanic rocks in Hoh Xil,northern Tibetan plateau,including volcanic rocks in the Jingyuhu,Xiongyingtai and Shuangquanzi areas. In the region,some older lava flows occur as thick sheets with a flat surface and weathering crust; while some relatively younger lavas remain a relict volcanic cone or vent. Most of the relict cones are small (<100m in diameter) and some are over hundred meters,distributed along faults,particular strike\|slip fault,e.g.,East Kunlun strike slip fault. Relatively,intermediate\|acid volcanic rocks are prominent,and basic\|intermediate and acid are subordinate. Petrological and geochemical results show that these volcanic rocks have many common affinities,characterized by high contents of w (K 2O)+ w (Na 2O) (about 8%),and w (K\-2O)/ w (Na\-2O)>1 or close to 1,and mostly belonged to shoshonite\|trachyte association and some to ultra\|potassic rocks. The K\|Ar dating of whole rock and mica shows that the volcanism lasts from middle Miocene (15 47Ma) to Pleistocene (0 69Ma); they are 0 69Ma,13 77Ma and 15 47Ma in Jingyuhu; 11 05Ma,12 22Ma and 12 83Ma in Xiongyingai,; 1 58Ma,2 24Ma,5 23Ma,5 85Ma,8 20Ma,8 41Ma and 10 67Ma in Shuangquanzi.Two types of xenolith and xenocryst were found in Jingyuhu and Xiongyingtai,i.e..,crustal xenolith and mantle xenocryst.展开更多
基金supported by the National Natural Science Foundation of China (No. 90814003)the Ministry of Science and Technology of China (No. 2009CB825005)+1 种基金the Ministry of Education of China (No. 200801830039)the MOST Special Fund from the State Key Laboratory of Geo-logical Processes and Mineral Resources, China University of Geosciences
文摘This article reports the petrography and mineral chemistry of dunite xenoliths and olivine xenocrysts entrained by the Early Cretaceous Xi'anli (西安里) hornblende (Hb)-gahbros from the southern Taihang (太行) Mountains, with the aim of constraining the nature of the Mesozoic lithospheric mantle in Central China. Rounded dunite xenoliths are 1-3 cm3 in size and display porphyroelastic, tabular, and protogranular textures. Chromite with Cr#=60-89 is common in the xenoliths. Oilvine xenocrysts of 4-6 mm in size are also found in the Hb-gabbros. Orthopyroxene reaction rims are commonly observed around olivine xenocrysts or between dunite xenoliths and host rocks. The porphyroclastic olivines within dunite xenoliths and olivine xenoerysts have kink bands and Mg#=83-94. The Mg# of olivine cores and rims are 89-94 (average, 90) and 83-86 (average, 84.4), respectively. The CaO contents of all olivines from the xenoliths and xenocrysts are less than 0.1 wt.%, suggesting a Hthospheric mantle origin. The Ca content (214 ppm-818 ppm) and Ti content (15 ppm-137 ppm) in the xenoliths and xenocrysts are similar to those of olivines from the dunite xenoliths, but are much higher than those of olivines from harzburgite and lherzolite xenoliths in the Fushan (符山) intrusion. This finding implies that the xenoliths and xenocrysts may have originated from harzburgites or lherzolites that were intensively modified by silica-rich melts. This result, combined with high Mg# (92-94) of olivine cores from the dunite xenoliths and xenocrysts, indicates that these ofivine xenocrysts and dunite xenoliths could represent the residue of ancient (Archean or Paleopro. terozoic) lithospheric mantle and might have experienced the same intensive modification by silica-rich melts as the host magma, resulting in enrichment in MgO and SiO2.
文摘It is known that large amounts of Cenozoic high potassium volcanic rocks occur on the Tibetan plateau. The question is where do those high potassium magmas come from? Since the plateau is being compressed by subduction and collision from the surrounding continents,it is a puzzle for us what is the formational environment and tectonic setting of these volcanic rocks? In particular,what is the relationship between these special rocks and formation and uplift of the plateau? We recently carried out an investigation on these Cenozoic volcanic rocks in Hoh Xil,northern Tibetan plateau,including volcanic rocks in the Jingyuhu,Xiongyingtai and Shuangquanzi areas. In the region,some older lava flows occur as thick sheets with a flat surface and weathering crust; while some relatively younger lavas remain a relict volcanic cone or vent. Most of the relict cones are small (<100m in diameter) and some are over hundred meters,distributed along faults,particular strike\|slip fault,e.g.,East Kunlun strike slip fault. Relatively,intermediate\|acid volcanic rocks are prominent,and basic\|intermediate and acid are subordinate. Petrological and geochemical results show that these volcanic rocks have many common affinities,characterized by high contents of w (K 2O)+ w (Na 2O) (about 8%),and w (K\-2O)/ w (Na\-2O)>1 or close to 1,and mostly belonged to shoshonite\|trachyte association and some to ultra\|potassic rocks. The K\|Ar dating of whole rock and mica shows that the volcanism lasts from middle Miocene (15 47Ma) to Pleistocene (0 69Ma); they are 0 69Ma,13 77Ma and 15 47Ma in Jingyuhu; 11 05Ma,12 22Ma and 12 83Ma in Xiongyingai,; 1 58Ma,2 24Ma,5 23Ma,5 85Ma,8 20Ma,8 41Ma and 10 67Ma in Shuangquanzi.Two types of xenolith and xenocryst were found in Jingyuhu and Xiongyingtai,i.e..,crustal xenolith and mantle xenocryst.