We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pump...We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pumping configuration includes two prepulses and one main pulse. The first prepulse normally irradiates the target, while the second prepulse and the main pulse irradiate the target at grazing-incident angles. We predict that saturation can be achieved for the Ne-like Cr x-ray lasers with a total pumping energy of 125mJ, Good beam qualities with no deflecting angle and a small divergence angle of 5 mrad are observed.展开更多
基金supported by the National Natural Science Foundation of China ( Grant Nos 60678007,60621063 and 10774184)the State Key Development Program for Basic Research of China (Grant No 2007CB815101)
文摘We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pumping configuration includes two prepulses and one main pulse. The first prepulse normally irradiates the target, while the second prepulse and the main pulse irradiate the target at grazing-incident angles. We predict that saturation can be achieved for the Ne-like Cr x-ray lasers with a total pumping energy of 125mJ, Good beam qualities with no deflecting angle and a small divergence angle of 5 mrad are observed.