This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures:...This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has nol-periodic points for 2 ≤ 1 ≤12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial/-cycle for the T function for 1 ≤68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ 1≤ 102.展开更多
The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slo...The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slope being less than 1. An odd number N that satisfies the condition of a slope less than 1 after n<sup>th</sup> Collatz iterations is defined as an n-step odd number. Through statistical analysis, it is found that after n<sup>th</sup> Collatz iterations, the iterative value of any n-step odd number N that is greater than 1 is less than N, which proves that the slope less than 1 is a sufficient and necessary condition for Collatz iteration convergence.展开更多
In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth col...In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.展开更多
提出了3x+1的又一推广函数F(z),指出其能引出复杂的分形结构.分析了函数F(z)的基本数学特征,探讨了该映射在C平面上广义M集的图像特征,并绘制了其广义M集的部分美妙的分形图像.利用调色板技术和轨迹井技术结合的方法,绘制F(z)广义M集的...提出了3x+1的又一推广函数F(z),指出其能引出复杂的分形结构.分析了函数F(z)的基本数学特征,探讨了该映射在C平面上广义M集的图像特征,并绘制了其广义M集的部分美妙的分形图像.利用调色板技术和轨迹井技术结合的方法,绘制F(z)广义M集的艺术分形图像,同时在Carlson(Carlson Paul W.Two artistic orbit trap rending methods for Newton M-set fractals[J].Computers & Graphics,1999,23(6):925-931)的基础上提出了环状M集轨迹井,取得了良好的艺术效果,给人一种美的享受.展开更多
This article introduces a change rule of 3x + 1 problem (Collatz conjecture), it’s named LiKe’s Rule. It’s a map of 3x + 1 problem, and details the path of each step of the change: For any positive integer, change ...This article introduces a change rule of 3x + 1 problem (Collatz conjecture), it’s named LiKe’s Rule. It’s a map of 3x + 1 problem, and details the path of each step of the change: For any positive integer, change by the Collatz conjecture. 1) This positive integer will change to an odd number;2) The odd number must change to a number of LiKe’s second sequence {3<sup>n</sup> – 1| n ∈ Z<sup>+</sup>};3) Then this 3<sup>n</sup> - 1 will change to a smaller 3<sup>n </sup>– 1 and gradually decrease to 8 (that is 3<sup>2</sup> - 1) then back to 1 in the end. If we can determine each step, the Collatz conjecture will be true. This is certainly more valuable than 2<sup>n</sup> (it might even explain 2<sup>n</sup>). And to illustrate the importance of this rule, introduced some important funny corollaries related to it.展开更多
The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of ...The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of the 3<em>X</em> + 1 problem. It is worth noting that, both conjectures are infamous for their simplicity in stating but intractability in solving. In this paper, I aim to provide a clear explanation about the reason why these two problems are difficult to handle and have very different characteristics on convergence of the series via creatively applying the probability theory and global expectancy value <em>E</em>(<em>n</em>) of energy contraction index. The corresponding convergence analysis explicitly shows that <em>a</em> = 3 leads to a difficult problem, while <em>a</em> > 3 leads to a divergent series. To the best of my knowledge, this is the first work to point out the difference between these cases. The corresponding results not only propose a new angle to analyze the 3<em>X</em> + 1 problem, but also shed some light on the future research.展开更多
基金supported by Natural Science Foundation of China under Grant Nos.60833008 and 60902024
文摘This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has nol-periodic points for 2 ≤ 1 ≤12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial/-cycle for the T function for 1 ≤68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ 1≤ 102.
文摘The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slope being less than 1. An odd number N that satisfies the condition of a slope less than 1 after n<sup>th</sup> Collatz iterations is defined as an n-step odd number. Through statistical analysis, it is found that after n<sup>th</sup> Collatz iterations, the iterative value of any n-step odd number N that is greater than 1 is less than N, which proves that the slope less than 1 is a sufficient and necessary condition for Collatz iteration convergence.
文摘In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.
文摘提出了3x+1的又一推广函数F(z),指出其能引出复杂的分形结构.分析了函数F(z)的基本数学特征,探讨了该映射在C平面上广义M集的图像特征,并绘制了其广义M集的部分美妙的分形图像.利用调色板技术和轨迹井技术结合的方法,绘制F(z)广义M集的艺术分形图像,同时在Carlson(Carlson Paul W.Two artistic orbit trap rending methods for Newton M-set fractals[J].Computers & Graphics,1999,23(6):925-931)的基础上提出了环状M集轨迹井,取得了良好的艺术效果,给人一种美的享受.
文摘This article introduces a change rule of 3x + 1 problem (Collatz conjecture), it’s named LiKe’s Rule. It’s a map of 3x + 1 problem, and details the path of each step of the change: For any positive integer, change by the Collatz conjecture. 1) This positive integer will change to an odd number;2) The odd number must change to a number of LiKe’s second sequence {3<sup>n</sup> – 1| n ∈ Z<sup>+</sup>};3) Then this 3<sup>n</sup> - 1 will change to a smaller 3<sup>n </sup>– 1 and gradually decrease to 8 (that is 3<sup>2</sup> - 1) then back to 1 in the end. If we can determine each step, the Collatz conjecture will be true. This is certainly more valuable than 2<sup>n</sup> (it might even explain 2<sup>n</sup>). And to illustrate the importance of this rule, introduced some important funny corollaries related to it.
文摘The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of the 3<em>X</em> + 1 problem. It is worth noting that, both conjectures are infamous for their simplicity in stating but intractability in solving. In this paper, I aim to provide a clear explanation about the reason why these two problems are difficult to handle and have very different characteristics on convergence of the series via creatively applying the probability theory and global expectancy value <em>E</em>(<em>n</em>) of energy contraction index. The corresponding convergence analysis explicitly shows that <em>a</em> = 3 leads to a difficult problem, while <em>a</em> > 3 leads to a divergent series. To the best of my knowledge, this is the first work to point out the difference between these cases. The corresponding results not only propose a new angle to analyze the 3<em>X</em> + 1 problem, but also shed some light on the future research.