Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduli...Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.展开更多
给出了有时间窗车辆路径问题(veh icle rou ting prob lem w ith tim e w indow,VRPTW)的通用数学模型,通过引入新的CX交叉算子,能有效避免传统遗传算法“早熟收敛”的局限。特别是在确定车辆数时,实现了VRPTW的路径长度和车辆数的同时...给出了有时间窗车辆路径问题(veh icle rou ting prob lem w ith tim e w indow,VRPTW)的通用数学模型,通过引入新的CX交叉算子,能有效避免传统遗传算法“早熟收敛”的局限。特别是在确定车辆数时,实现了VRPTW的路径长度和车辆数的同时优化,改善了优化结果,提高了优化速度。实验结果表明,该方法明显减少了迭代次数。展开更多
The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a mu...The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a multi-agent model system for the VRPTW based on the internal behavior of agents and coordination among the agents. The system presents a formal view of coordination using the traditional contract-net protocol (CNP) that relies on the basic loop of agent behavior for order receiving, order announcement, bid calculation, and order scheduling followed by order execution. An improved CNP method based on a vehicle selection strategy is used to reduce the number of negotiations and the negotiation time. The model is validated using Solomon's benchmarks, with the results showing that the improved CNP uses only 30% as many negotiations and only 70% of the negotiation time of the traditional CNP.展开更多
基金supported by the National Natural Science Foundation of China(6113200291338101+3 种基金91338108)the National S&T Major Project(2011ZX03004-001-01)the Research Fund of Tsinghua University(2011Z05117)the Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.
文摘给出了有时间窗车辆路径问题(veh icle rou ting prob lem w ith tim e w indow,VRPTW)的通用数学模型,通过引入新的CX交叉算子,能有效避免传统遗传算法“早熟收敛”的局限。特别是在确定车辆数时,实现了VRPTW的路径长度和车辆数的同时优化,改善了优化结果,提高了优化速度。实验结果表明,该方法明显减少了迭代次数。
文摘The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a multi-agent model system for the VRPTW based on the internal behavior of agents and coordination among the agents. The system presents a formal view of coordination using the traditional contract-net protocol (CNP) that relies on the basic loop of agent behavior for order receiving, order announcement, bid calculation, and order scheduling followed by order execution. An improved CNP method based on a vehicle selection strategy is used to reduce the number of negotiations and the negotiation time. The model is validated using Solomon's benchmarks, with the results showing that the improved CNP uses only 30% as many negotiations and only 70% of the negotiation time of the traditional CNP.