Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researche...Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researchers because of its flexibility and robustness. However, designing efficient WNCS over Mobile Ad Hoc Networks (MANET) is still a challenging topic because of its less-predictable aspects, such as inconsistent delay, packet drop probability, and dynamic topology. This paper presents design guidelines for WNCS over MANET using the Network Simulator version 2, NS2 software. It investigates the impact of packet delay and packet drop under the AODV and DSR routing protocols. The simulation results have been compared to MATLAB results for validation. Keywords Adhoc On-Demand Distance Vector (AODV) routing - Dynamic Source routing (DSR) - Mobile Adhoc Networks (MANET) - Wireless Networked Control Systems (WNCS) Mohammad Shahidul Hasan received his BSc and first MSc in Computer Science from the University of Dhaka, Bangladesh. He obtained his 2nd MSc in Computer & Network Engineering from Sheffield Hallam University, Sheffield, UK. Currently he is pursuing his PhD under the Faculty of Computing, Engineering and Technology, Staffordshire University, Stafford, UK in Networked Control Systems over MANET.Chris Harding received his BSc in Computing Science and Masters by Research from Staffordshire University, UK. Currently he is pursuing his PhD in Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.Hongnian Yu is Professor of Computer Science at Staffordshire University. He was a lecturer in Control and Systems Engineering at Yanshan University, China in 1985–1990, did his PhD in Robotics at King’s College London (1990–1994), was a research fellow in Manufacturing Systems at Sussex University (1994–1996), a lecturer in Artificial Intelligence at Liver-pool J展开更多
In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represe...In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.展开更多
The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming l...The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming language. Zigbee wireless technology is chosen for the wireless data transfer system. The experimental testbed was built and the system software and hardware were implemented. In order to compare the performance of the wired and wireless system, a corresponding wired water level control system was built. Experimental results show that under the same PI parameters, the settling time of the wired system is 3.3 times faster than the wireless system. However, the percent overshoot using the wireless controller is 4% smaller.展开更多
无线网络化系统(wireless networked control system,WNCS)中节点能量受限是影响系统性能的重要因素.本文提出了一种自适应能量调度方法解决节点能量与控制需求间的矛盾,在采样周期与能量消耗之间关系的基础上,利用动态采样周期实现能...无线网络化系统(wireless networked control system,WNCS)中节点能量受限是影响系统性能的重要因素.本文提出了一种自适应能量调度方法解决节点能量与控制需求间的矛盾,在采样周期与能量消耗之间关系的基础上,利用动态采样周期实现能耗的实时调节,满足节点生存时间的需求.进而,将自适应采样的WNCS建模为一类具有短暂不确定切换信号的离散切换系统,采用切换状态反馈控制律,利用切换系统理论分析了系统的稳定性,给出了系统渐近稳定时控制器增益与滞留时间需要满足的约束条件.最后在Truetime1.5和MATLAB仿真平台上验证了文中提出的方法和结论.展开更多
文摘Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researchers because of its flexibility and robustness. However, designing efficient WNCS over Mobile Ad Hoc Networks (MANET) is still a challenging topic because of its less-predictable aspects, such as inconsistent delay, packet drop probability, and dynamic topology. This paper presents design guidelines for WNCS over MANET using the Network Simulator version 2, NS2 software. It investigates the impact of packet delay and packet drop under the AODV and DSR routing protocols. The simulation results have been compared to MATLAB results for validation. Keywords Adhoc On-Demand Distance Vector (AODV) routing - Dynamic Source routing (DSR) - Mobile Adhoc Networks (MANET) - Wireless Networked Control Systems (WNCS) Mohammad Shahidul Hasan received his BSc and first MSc in Computer Science from the University of Dhaka, Bangladesh. He obtained his 2nd MSc in Computer & Network Engineering from Sheffield Hallam University, Sheffield, UK. Currently he is pursuing his PhD under the Faculty of Computing, Engineering and Technology, Staffordshire University, Stafford, UK in Networked Control Systems over MANET.Chris Harding received his BSc in Computing Science and Masters by Research from Staffordshire University, UK. Currently he is pursuing his PhD in Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.Hongnian Yu is Professor of Computer Science at Staffordshire University. He was a lecturer in Control and Systems Engineering at Yanshan University, China in 1985–1990, did his PhD in Robotics at King’s College London (1990–1994), was a research fellow in Manufacturing Systems at Sussex University (1994–1996), a lecturer in Artificial Intelligence at Liver-pool J
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金supported by Science Fund for Distinguished Young Scholars of Hebei Province (No. F2011203110)Program for New Century Excellent Talents in the University of China (No. NCET-08-0658)+2 种基金National Natural Science Foundation of China (No. 60974018, No. 60934003)National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.
基金Supported by National Natural Science Foundation of China 60404022, 60704009), National Outstanding Youth Foundation 60525303), and Natural Science Foundation of Hebei Province F2005000390, F2006000270)
文摘The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming language. Zigbee wireless technology is chosen for the wireless data transfer system. The experimental testbed was built and the system software and hardware were implemented. In order to compare the performance of the wired and wireless system, a corresponding wired water level control system was built. Experimental results show that under the same PI parameters, the settling time of the wired system is 3.3 times faster than the wireless system. However, the percent overshoot using the wireless controller is 4% smaller.
文摘无线网络化系统(wireless networked control system,WNCS)中节点能量受限是影响系统性能的重要因素.本文提出了一种自适应能量调度方法解决节点能量与控制需求间的矛盾,在采样周期与能量消耗之间关系的基础上,利用动态采样周期实现能耗的实时调节,满足节点生存时间的需求.进而,将自适应采样的WNCS建模为一类具有短暂不确定切换信号的离散切换系统,采用切换状态反馈控制律,利用切换系统理论分析了系统的稳定性,给出了系统渐近稳定时控制器增益与滞留时间需要满足的约束条件.最后在Truetime1.5和MATLAB仿真平台上验证了文中提出的方法和结论.