The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum ...The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.展开更多
Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and...Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer...Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area.展开更多
Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex...Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification.Here,wire arc additive manufacturing(WAAM)process was used to fabricate a steel-nickel structural component,whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials(steel,537 MPa and nickel,455 MPa),which has not been reported previously.The as-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy.The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength,beyond the sum of parts.The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components,with site-specific properties,for specific structural or functional applications.展开更多
In this article, we report on the characterization of various molecular junctions' current-voltage characteristics (Ⅰ-Ⅴ curves) evolution under mechanical modulations, by employing a novel electrochemically assis...In this article, we report on the characterization of various molecular junctions' current-voltage characteristics (Ⅰ-Ⅴ curves) evolution under mechanical modulations, by employing a novel electrochemically assisted-mechanically controllable break junction (EC-MCBJ) method. For 1,4-benzenedithiol, the Ⅰ-Ⅴ curves measured at constant electrode pair separation show excellent reproducibility, indicating the feasibility of our EC-MCBJ method for fabricating molecular junctions. For ferrocene-bisvinylphenylmethyl dithiol (Fc-VPM), an anomalous type of Ⅰ-Ⅴ curve was observed by the particular control over the stepping motor. This phenomenon is rationalized assuming a model of atomic contact evolution with the presence of molecular junctions. To test this hypothesized model, a molecule with a longer length, 1,3-butadiyne-linked dinuclear ruthenium(H) complex (Ru-1), was implemented, and the Ⅰ-Ⅴ curve evolution was investigated under similar circumstances. Compared with Fc-VPM, the observed Ⅰ-Ⅴ curves show close analogy and minor differences, and both of them fit the hypothesized model well.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,ob展开更多
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i...Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.展开更多
Investigations on the fabrication of large-size lightweight Mg alloy components by wire-arc directed en-ergy deposition(DED)are steadily flourishing.Nevertheless,most of these components still suffer from inferior per...Investigations on the fabrication of large-size lightweight Mg alloy components by wire-arc directed en-ergy deposition(DED)are steadily flourishing.Nevertheless,most of these components still suffer from inferior performance due to internal defects and inherent columnar grains.Herein,external ultrasound fields with different powers were successfully introduced into the wire-arc DED of AZ31 Mg alloy.The microstructure,defects,and mechanical properties of the fabricated components were carefully charac-terized and compared.The results show that the external ultrasound fields lead to decreased porosity,complete columnar to equiaxed transition(CET),and enhanced performance.Consequently,the UA90 samples exhibited a remarkable increase of~30%,~45%,and~189%in yield strength,ultimate tensile strength,and elongation,respectively.The dominant mechanisms of enhanced strength-ductility synergy were analyzed in detail.This study thus sheds new light on wire-arc DED of Mg alloy components with excellent performance via external ultrasound fields.展开更多
The underwater electrical explosion of an aluminum wire is influenced by many factors, such as wire parameters, pulsed power energy, etc. In this paper, underwater electrical explosion of an aluminum wire was investig...The underwater electrical explosion of an aluminum wire is influenced by many factors, such as wire parameters, pulsed power energy, etc. In this paper, underwater electrical explosion of an aluminum wire was investigated with pulsed voltage in the time scale of a few microseconds. A self-integrated Rogowski coil and a voltage divider were used for the measurements of current and voltage at the wire load, respectively. The deposited energy before breakdown was calculated based on experimental waveforms of current and voltage by mathematical method. Effects of the applied voltage, circuit inductance and sion and energy deposition were analyzed by means parameters of Al wire on the electrical exploof experiments and calculation. The results show that the current rise rate has an important influence on explosion process, such as the energy deposition before breakdown, the electrical power as well as the various explosion stages. A higher current rise rate can be achieved by increasing applied voltage and decreasing circuit inductance. The inhomogeneity of the energy deposition will result in prematured breakdown as well as lowered energy deposition, making the explosion process of wire more complicated.展开更多
The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30...The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30 V and current of 260 A.The deposition efficiency keeps over 90%for both 12 mm and 8 mm narrow gap welding.For 12 mm narrow gap welding,when the voltage is 28 V and the current is 264 A(or 286 A),no pores are found in the narrow gap weld.In the continuous welding process,manganese vapor,aluminum vapor and CO continuously generate to form gasbag and occupy the narrow gap space,thus protecting the droplet and molten pool from the invasion of air.展开更多
Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-...Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabri- cated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxida- tion in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were character- ized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt4Bi96/Au had a much higher catalytic activity than Pt11Bis89/Au and Pt13Bis87/Au, and Pt4Bi96/Au exhibited a current density of 2.7mA.cm^-2, which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.展开更多
This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and i...This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and incomplete fusion, cracks, or other defects did not exist.Compared with the single-track deposition layer in air, the oxidation degree of the underwater single-track deposition layer was slightly higher.In both the underwater and in-air deposition layers, columnar dendrites nucleated close to the fusion line and grew along the direction of the maximum cooling rate in the fusion region(FR), while equiaxed grains formed in the deposited region(DR). As the environment changed from air to water, the width of DR and height of FR decreased, but the deposition angle and height of DR increased. The grain size and ratio of the high-angle boundaries also decreased due to the large cooling rate and low peak temperature in the water environment.Besides, the existence of a water environment benefitted the reduction of magnesium element burning loss in the DR. The microhardness values of the underwater deposition layer were much larger than those of the in-air layer, owing to the fine grains and high magnesium content.展开更多
Nickel-based superalloys fabricated by wire-arc directed energy deposition,also known as wire arc ad-ditive manufacturing(WAAM),usually exhibit inherent columnar grain structure,micro-segregation,and rough surface.A n...Nickel-based superalloys fabricated by wire-arc directed energy deposition,also known as wire arc ad-ditive manufacturing(WAAM),usually exhibit inherent columnar grain structure,micro-segregation,and rough surface.A novel deposition strategy,integrating an oscillating arc and forced interlayer cooling,was developed in WAAM of Inconel(IN)718 components.The influences of deposition modes on geometrical characteristics,defects,microstructure,and mechanical properties were systematically evaluated.The re-sults showed that the oscillation mode,compared to the standard parallel mode,can effectively promote the molten pool’s spread and wettability,as well as prevent overflow,finally resulting in high geometric accuracy.In addition,the voids-like defects were reduced by 77.78%,while most common crack defects were not observed.Meanwhile,the forced interlayer cooling process further increased the cooling rate,leading to the reduction of the element segregation as well as the proportion of long-chain-like Laves phases.After a short-process modified heat treatment,the anisotropic mechanical behaviors of the as-deposited samples were almost eliminated.Compared with the parallel mode samples,the yield strength and ultimate tensile strength of the oscillation path samples increased by 5.75%and 9.25%,respectively,while the elongation increased significantly by 51.20%.This signifies that their strength and ductility were simultaneously improved.The strengthening mechanisms were further analyzed based on the distribution of the strengthening phases,as well as the residual Laves phases and porosity.展开更多
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.
基金Projects(52075317,51905333)supported by the National Natural Science Foundation of ChinaProject(IEC\NSFC\181278)supported by the Royal Society through International Exchanges 2018 Cost Share(China)Scheme+2 种基金Project(19YF1418100)supported by Shanghai Sailing Program,ChinaProjects(19511106400,19511106402)supported by Shanghai Science and Technology Committee Innovation,ChinaProject(19030501300)supported by Shanghai Local Colleges and Universities Capacity Building Special Plan,China。
文摘Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金the National Natural Science Foundation of China(Nos.51605276 and51905333)Shanghai Sailing Program(No.19YF1418100)+2 种基金Shanghai Science and Technology Committee Innovation Grant(Nos.17JC1400600 and 17JC1400601)Karamay Science and Technology Major Project(No.2018ZD002B)Aid for Xinjiang Science and Technology Project(No2019E0235)。
文摘Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area.
基金carried out at the Welding Engineering Research Group,University of Wollongong,and it was supported by China Scholarship Council(No.201506680056)the National Natural Science Foundation of China(No.51805085)。
文摘Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification.Here,wire arc additive manufacturing(WAAM)process was used to fabricate a steel-nickel structural component,whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials(steel,537 MPa and nickel,455 MPa),which has not been reported previously.The as-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy.The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength,beyond the sum of parts.The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components,with site-specific properties,for specific structural or functional applications.
基金This work was supported by the National Basic Research Program of China (Nos. 2011YQ030124, 2014CB845603, and 2015CB932301), National Natural Science Foundation of China (Nos. 91427304, 21321062, 21303114, 21403181, and 21503179), Natural Science Foundation of Fujian Province (No. 2012J05034), and by CNRS UMR 8640 PASTEUR and LIA CNRS NanoBioCatEchem.
文摘In this article, we report on the characterization of various molecular junctions' current-voltage characteristics (Ⅰ-Ⅴ curves) evolution under mechanical modulations, by employing a novel electrochemically assisted-mechanically controllable break junction (EC-MCBJ) method. For 1,4-benzenedithiol, the Ⅰ-Ⅴ curves measured at constant electrode pair separation show excellent reproducibility, indicating the feasibility of our EC-MCBJ method for fabricating molecular junctions. For ferrocene-bisvinylphenylmethyl dithiol (Fc-VPM), an anomalous type of Ⅰ-Ⅴ curve was observed by the particular control over the stepping motor. This phenomenon is rationalized assuming a model of atomic contact evolution with the presence of molecular junctions. To test this hypothesized model, a molecule with a longer length, 1,3-butadiyne-linked dinuclear ruthenium(H) complex (Ru-1), was implemented, and the Ⅰ-Ⅴ curve evolution was investigated under similar circumstances. Compared with Fc-VPM, the observed Ⅰ-Ⅴ curves show close analogy and minor differences, and both of them fit the hypothesized model well.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,ob
基金National Natural Science Foundation of China (52275374, 52205414)Xi’an Jiaotong University Basic Research Funds for Freedom of Exploration and Innovation-Student Programs (xzy022023066)+3 种基金Key Research and Development Projects of Shaanxi Province (2023-YBGY-361)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)State Key Laboratory for Mechanical Behavior of Materials (20212311)Xiaomi Foundation through Xiaomi Young Scholar Program
文摘Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.
基金National Natural Science Foun-dation of China(Nos.52275374,52205414)Xiaomi Founda-tion through the Xiaomi Young Scholar Program,the Key Research and Development Projects of Shaanxi Province(No.2023-YBGY-361)+2 种基金as well as the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)State Key Laboratory for Mechan-ical Behavior of Materials(NO.20212311)as well as the Xi’an Jiaotong University Basic Research Funds for Freedom of Explo-ration and Innovation-Student Programs(NO.xzy022023066).
文摘Investigations on the fabrication of large-size lightweight Mg alloy components by wire-arc directed en-ergy deposition(DED)are steadily flourishing.Nevertheless,most of these components still suffer from inferior performance due to internal defects and inherent columnar grains.Herein,external ultrasound fields with different powers were successfully introduced into the wire-arc DED of AZ31 Mg alloy.The microstructure,defects,and mechanical properties of the fabricated components were carefully charac-terized and compared.The results show that the external ultrasound fields lead to decreased porosity,complete columnar to equiaxed transition(CET),and enhanced performance.Consequently,the UA90 samples exhibited a remarkable increase of~30%,~45%,and~189%in yield strength,ultimate tensile strength,and elongation,respectively.The dominant mechanisms of enhanced strength-ductility synergy were analyzed in detail.This study thus sheds new light on wire-arc DED of Mg alloy components with excellent performance via external ultrasound fields.
基金supported by the State Key Program of National Natural Science Foundation of China(No.50637010)
文摘The underwater electrical explosion of an aluminum wire is influenced by many factors, such as wire parameters, pulsed power energy, etc. In this paper, underwater electrical explosion of an aluminum wire was investigated with pulsed voltage in the time scale of a few microseconds. A self-integrated Rogowski coil and a voltage divider were used for the measurements of current and voltage at the wire load, respectively. The deposited energy before breakdown was calculated based on experimental waveforms of current and voltage by mathematical method. Effects of the applied voltage, circuit inductance and sion and energy deposition were analyzed by means parameters of Al wire on the electrical exploof experiments and calculation. The results show that the current rise rate has an important influence on explosion process, such as the energy deposition before breakdown, the electrical power as well as the various explosion stages. A higher current rise rate can be achieved by increasing applied voltage and decreasing circuit inductance. The inhomogeneity of the energy deposition will result in prematured breakdown as well as lowered energy deposition, making the explosion process of wire more complicated.
基金supported by China Postdoctoral Science Foundation Funded Project(Grant No.2016M601753)Natural Science Foundation of Jiangsu Province(Grant No.BK20201453)Major Projects of Natural Science Research in Colleges and Universities in Jiangsu(Grant No.19KJA460009).
文摘The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30 V and current of 260 A.The deposition efficiency keeps over 90%for both 12 mm and 8 mm narrow gap welding.For 12 mm narrow gap welding,when the voltage is 28 V and the current is 264 A(or 286 A),no pores are found in the narrow gap weld.In the continuous welding process,manganese vapor,aluminum vapor and CO continuously generate to form gasbag and occupy the narrow gap space,thus protecting the droplet and molten pool from the invasion of air.
文摘Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabri- cated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxida- tion in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were character- ized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt4Bi96/Au had a much higher catalytic activity than Pt11Bis89/Au and Pt13Bis87/Au, and Pt4Bi96/Au exhibited a current density of 2.7mA.cm^-2, which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. HIT.OCEF.2021036)。
文摘This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and incomplete fusion, cracks, or other defects did not exist.Compared with the single-track deposition layer in air, the oxidation degree of the underwater single-track deposition layer was slightly higher.In both the underwater and in-air deposition layers, columnar dendrites nucleated close to the fusion line and grew along the direction of the maximum cooling rate in the fusion region(FR), while equiaxed grains formed in the deposited region(DR). As the environment changed from air to water, the width of DR and height of FR decreased, but the deposition angle and height of DR increased. The grain size and ratio of the high-angle boundaries also decreased due to the large cooling rate and low peak temperature in the water environment.Besides, the existence of a water environment benefitted the reduction of magnesium element burning loss in the DR. The microhardness values of the underwater deposition layer were much larger than those of the in-air layer, owing to the fine grains and high magnesium content.
基金financial sup-port from the National Natural Science Foundation of China(Nos.52275374 and 51805415)the Young Elite Scientists Sponsorship Program by CAST:2021QNRC001.
文摘Nickel-based superalloys fabricated by wire-arc directed energy deposition,also known as wire arc ad-ditive manufacturing(WAAM),usually exhibit inherent columnar grain structure,micro-segregation,and rough surface.A novel deposition strategy,integrating an oscillating arc and forced interlayer cooling,was developed in WAAM of Inconel(IN)718 components.The influences of deposition modes on geometrical characteristics,defects,microstructure,and mechanical properties were systematically evaluated.The re-sults showed that the oscillation mode,compared to the standard parallel mode,can effectively promote the molten pool’s spread and wettability,as well as prevent overflow,finally resulting in high geometric accuracy.In addition,the voids-like defects were reduced by 77.78%,while most common crack defects were not observed.Meanwhile,the forced interlayer cooling process further increased the cooling rate,leading to the reduction of the element segregation as well as the proportion of long-chain-like Laves phases.After a short-process modified heat treatment,the anisotropic mechanical behaviors of the as-deposited samples were almost eliminated.Compared with the parallel mode samples,the yield strength and ultimate tensile strength of the oscillation path samples increased by 5.75%and 9.25%,respectively,while the elongation increased significantly by 51.20%.This signifies that their strength and ductility were simultaneously improved.The strengthening mechanisms were further analyzed based on the distribution of the strengthening phases,as well as the residual Laves phases and porosity.