A plot experiment including four treatments, CK (N 105 kg ha-1 as urea, including a basal N application of 35 kg ha-I and a topdressing N 70 kg ha-1 at turned green stage) and optimized N management (OPT1, OPT2 and...A plot experiment including four treatments, CK (N 105 kg ha-1 as urea, including a basal N application of 35 kg ha-I and a topdressing N 70 kg ha-1 at turned green stage) and optimized N management (OPT1, OPT2 and OPT3, applied two-thirds, one-third and two-fifths N at jointing stage, respectively, total N 60 kg ha-l), was conducted to evaluate the effects of nitrogen management on growth and N uptake of winter wheat (Triticum aestivum), Dongnong 1, which is the first highly cold tolerant winter wheat in China. Index of population quality, N uptake and yield were determined. The ear-bearing tiller rate was increased by above 12%, and the leaf area index, biomass and N uptake were significantly decreased (P〈O.05) at jointing stage. OPT treatments increased the grain to leaf area ratio at heading stage, the dry matter weight and N uptake after heading by 14.3-27.9%, 11.6-28.7% and 118.1-161.8 %, respectively. The yield of the OPT treatments was increased by 14.2-37.5% compared with CK, and there was a significant difference (P〈0.05) between CK and OPT1 treatments. Harvest index and N partial factor productivity (PFP, kg grain yield per kg N applied) was clearly enhanced from 0.4 and 35.6 kg, respectively for CK to an average of 0.48 (P〈0.05) and 77.6 kg (P〈0.05) in the OPT treatments. These results indicated that the optimized N management increased the harvest index, yield and N use efficiency by decreasing the N application rate and postponing N application time, improved wheat population quality, controlled excessive growth in the vegetative stages and increased dry matter and N accumulation rates after heading.展开更多
文摘用美国Li-Cor公司生产的Li-6400光合作用测定仪控制CO2浓度和温度,测量了华北平原冬小麦(Triticum aestivum)的光响应数据。分别用C3植物光响应新模型、直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些实测数据,分析了由直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些数据得到的最大净光合速率(The maximum net photosynthetic rate)远大于实测值,而光饱和点(Light saturation point)远小于实测值的原因。结果表明,由C3植物光响应新模型拟合的结果与实测数据符合程度最高(R2=0.9994和R2=0.9987);表观量子效率(Apparent quantum yield)不是一个理想的表示植物利用光能的指标,建议用植物光响应曲线在光补偿点处的量子效率作为表示植物光能利用的指标。
基金supported by grants from the National Basic Research Program of China (973 Program,2009CB118606)Special Fund for Agro-Scientific Research in the Public Interest, China (201103003)
文摘A plot experiment including four treatments, CK (N 105 kg ha-1 as urea, including a basal N application of 35 kg ha-I and a topdressing N 70 kg ha-1 at turned green stage) and optimized N management (OPT1, OPT2 and OPT3, applied two-thirds, one-third and two-fifths N at jointing stage, respectively, total N 60 kg ha-l), was conducted to evaluate the effects of nitrogen management on growth and N uptake of winter wheat (Triticum aestivum), Dongnong 1, which is the first highly cold tolerant winter wheat in China. Index of population quality, N uptake and yield were determined. The ear-bearing tiller rate was increased by above 12%, and the leaf area index, biomass and N uptake were significantly decreased (P〈O.05) at jointing stage. OPT treatments increased the grain to leaf area ratio at heading stage, the dry matter weight and N uptake after heading by 14.3-27.9%, 11.6-28.7% and 118.1-161.8 %, respectively. The yield of the OPT treatments was increased by 14.2-37.5% compared with CK, and there was a significant difference (P〈0.05) between CK and OPT1 treatments. Harvest index and N partial factor productivity (PFP, kg grain yield per kg N applied) was clearly enhanced from 0.4 and 35.6 kg, respectively for CK to an average of 0.48 (P〈0.05) and 77.6 kg (P〈0.05) in the OPT treatments. These results indicated that the optimized N management increased the harvest index, yield and N use efficiency by decreasing the N application rate and postponing N application time, improved wheat population quality, controlled excessive growth in the vegetative stages and increased dry matter and N accumulation rates after heading.