Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and ...Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.展开更多
Glucosinolate content in Camelina sativa (L.) Crantz (false flax, gold-of-pleasure) and its relatives C. microcarpa, C. alyssum, C. rumelica and C. hispida was investigated. With the exception of C. hispida in which G...Glucosinolate content in Camelina sativa (L.) Crantz (false flax, gold-of-pleasure) and its relatives C. microcarpa, C. alyssum, C. rumelica and C. hispida was investigated. With the exception of C. hispida in which GSL3 was absent, in all remaining species, three characteristic glucosinolates (GSL1, GSL2 and GSL3) were identified. Camelina genotypes of spring type (C. sativa CAM134, C. alyssum CAM21) showed a typical pattern of glucosenolates with GSL1 > GSL3. GSL1 was present in traces in C. microcarpa and at low levels in C. rumelica and C. alyssum subsp. alyssum. In C. hispida, the GSL1 content was greater than GSL2 and, only in this specie, GSL2 represented less than 50% of total glucosinolates. These differences in the glucosinolate pattern among Camelina species could be exploited to reduce the total content of glucosinolates in C. sativa.展开更多
文摘Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.
文摘Glucosinolate content in Camelina sativa (L.) Crantz (false flax, gold-of-pleasure) and its relatives C. microcarpa, C. alyssum, C. rumelica and C. hispida was investigated. With the exception of C. hispida in which GSL3 was absent, in all remaining species, three characteristic glucosinolates (GSL1, GSL2 and GSL3) were identified. Camelina genotypes of spring type (C. sativa CAM134, C. alyssum CAM21) showed a typical pattern of glucosenolates with GSL1 > GSL3. GSL1 was present in traces in C. microcarpa and at low levels in C. rumelica and C. alyssum subsp. alyssum. In C. hispida, the GSL1 content was greater than GSL2 and, only in this specie, GSL2 represented less than 50% of total glucosinolates. These differences in the glucosinolate pattern among Camelina species could be exploited to reduce the total content of glucosinolates in C. sativa.