This paper analyzes the characteristics of climate, geology and geomorphology, vegetation, and sand dune distribution in the Cuonahu Lake area beside the Qinghai-Tibet Railway. The types and causes of railway blown-sa...This paper analyzes the characteristics of climate, geology and geomorphology, vegetation, and sand dune distribution in the Cuonahu Lake area beside the Qinghai-Tibet Railway. The types and causes of railway blown-sand hazards are discussed, and the effectiveness of various sand-controlling measures is assessed. From the perspective of integrated management, a sand-controlling system that combines several engineering measures, including nylon net sand barriers, concrete sand barriers, movable-board sand barriers, sand interception ditches, gravel/rock cover, film sandbags, and permanent vegetation is most beneficial.展开更多
The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 ...The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 μm, which confirms Latham’s assumption that the large particles in wind-blown sand flux acquired positive charge while negative charge developed on small ones. In the meanwhile, the measured data also show that the average charge-to-mass ratio for wind-blown sand particles decreases with the increase of the particle diameter and the wind velocity, and increases with the rise of height. The electric field in wind-blown sand flux is mainly formed by the moving charged sand particles. Its direction is vertical to the Earth’s surface and upward, which is opposite to that of the fair-weather field. The electric field increases with wind velocity and height increasing. These experimental results will lay the foundation for developing the theoretical analysis of the electrification phenomenon in展开更多
基金supported by the China National Natural Science Foundation (Gant No. 50908152)the Special Funds from Scientific Research Institutes Technology Development and Study Projects (2008EG123206 and NCSTE-2007-JKZX-209)
文摘This paper analyzes the characteristics of climate, geology and geomorphology, vegetation, and sand dune distribution in the Cuonahu Lake area beside the Qinghai-Tibet Railway. The types and causes of railway blown-sand hazards are discussed, and the effectiveness of various sand-controlling measures is assessed. From the perspective of integrated management, a sand-controlling system that combines several engineering measures, including nylon net sand barriers, concrete sand barriers, movable-board sand barriers, sand interception ditches, gravel/rock cover, film sandbags, and permanent vegetation is most beneficial.
基金the National Outstanding Youth Fund (Grant No. 19725207) and the Natural Science Fund of Gansu Province.
文摘The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 μm, which confirms Latham’s assumption that the large particles in wind-blown sand flux acquired positive charge while negative charge developed on small ones. In the meanwhile, the measured data also show that the average charge-to-mass ratio for wind-blown sand particles decreases with the increase of the particle diameter and the wind velocity, and increases with the rise of height. The electric field in wind-blown sand flux is mainly formed by the moving charged sand particles. Its direction is vertical to the Earth’s surface and upward, which is opposite to that of the fair-weather field. The electric field increases with wind velocity and height increasing. These experimental results will lay the foundation for developing the theoretical analysis of the electrification phenomenon in