In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircr...In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house' genetic algorithm was an appropriate tool in improving various aspects of a wing's aerodynamic performances.展开更多
In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditio...In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditions. A low Reynolds number airfoil was designed after testing a number of low Reynolds number airfoils and then making one of our own; it was tested for use in small HAWTs. Studies using XFOIL and wind tunnel experiments were performed on the new airfoil at various Reynolds numbers. The pressure distribution, C p , the lift and drag coefficients, C L and C D , were studied for varying angles of attack, α. It is found that the airfoil can achieve very good aerodynamic characteristics at different Reynolds numbers and can be used as an efficient airfoil in small HAWTs.展开更多
Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100...Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.展开更多
基金Bombardier Aerospace,Thales Canada,The Consortium in Research and Aerospace in Canada(CRIAQ)the Natural Sciences and Engineering Research Council of Canada(NSERC)for their financial support
文摘In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house' genetic algorithm was an appropriate tool in improving various aspects of a wing's aerodynamic performances.
文摘In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditions. A low Reynolds number airfoil was designed after testing a number of low Reynolds number airfoils and then making one of our own; it was tested for use in small HAWTs. Studies using XFOIL and wind tunnel experiments were performed on the new airfoil at various Reynolds numbers. The pressure distribution, C p , the lift and drag coefficients, C L and C D , were studied for varying angles of attack, α. It is found that the airfoil can achieve very good aerodynamic characteristics at different Reynolds numbers and can be used as an efficient airfoil in small HAWTs.
基金supported by the National Natural Science Foundation of China (No. 11372356)
文摘Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.