Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in f...Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in flow hydraulic and creates an interaction between the main channel and floodplains, resulting in an apparent shear stress and a transverse momentum transfer. The amount of such a stress plays an important role in many river engineering measures [1]. Due to the flow complexity, the common approximate analytical methods are not enough to identify the flow profile. The FLOW3D Software with its great features in three-dimensional analysis of flow field is used as a tool to investigate the shear stress in a direct symmetrical compound rectangular channel. After the simulation of models, it is found that an increase in the relative width and relative depth parameters decreases the percentage of apparent shear stress and an increase in the relative roughness causes it to be increased [2].展开更多
Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput eff...Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput efficiency degradation, densely deployed Wi Fi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to effi ciently utilize scarce spectrum resources, by matching physical layer resources to traffi c demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in Wi Fi networks. This approach, named SFCA(Subcarrier Fine-grained Channel Access), adopts DOFDM(Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a subcarrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more fl exibility and higher frequency efficiency. The MAC layer uses a frequencytime domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA(an established access scheme)showing significant outperformance. Finally we present results for next generation 802.11 ac Wi Fi networks.展开更多
介绍俄罗斯港口设计规范Standards for the design of sea channels,fairways and maneuvering areas中有关港口平面布置的设计方法,通过案例计算,分析与中国《海港总体设计规范》之间的设计差异,发现中俄规范中对港口平面布置有较大的...介绍俄罗斯港口设计规范Standards for the design of sea channels,fairways and maneuvering areas中有关港口平面布置的设计方法,通过案例计算,分析与中国《海港总体设计规范》之间的设计差异,发现中俄规范中对港口平面布置有较大的相似之处,但对于港池宽度、停泊水域宽度和航道宽度等部分有差异,对类似实际工程应用有指导意义。展开更多
Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss C...Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss Complex to the recent Holocene alluvium, forming three distinctive geomorphological regions across the river basin: the pediplane and upper and lower alluvial areas. Sixty cross-sections from throughout the main trunk stream were surveyed and the bankfull width, depth, cross-sectional area, and maximum depth were measured. Sediment samples from each location were studied and the flow velocity, stream power, Manning’s roughness coefficient, and shear stress were estimated. The results show that the bankfull channel cross-section area, width, width-to-depth ratio, and channel capacity increased between the beginning and middle of the river. Thereafter, the size of the river started to decrease in the lower alluvial area. This was characterized by gentle gradients, cohesive bank materials with grass cover, and channel switching. Within the lower part of the river, the channel capacity was observed to diminish as the drainage area increased. This increased the bankfull flow frequency and accelerated large floodwater losses in the floodplain via overbank flows and floodways.展开更多
文摘Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in flow hydraulic and creates an interaction between the main channel and floodplains, resulting in an apparent shear stress and a transverse momentum transfer. The amount of such a stress plays an important role in many river engineering measures [1]. Due to the flow complexity, the common approximate analytical methods are not enough to identify the flow profile. The FLOW3D Software with its great features in three-dimensional analysis of flow field is used as a tool to investigate the shear stress in a direct symmetrical compound rectangular channel. After the simulation of models, it is found that an increase in the relative width and relative depth parameters decreases the percentage of apparent shear stress and an increase in the relative roughness causes it to be increased [2].
基金supported by National Natural Science Foundation of China(No.61471376)the 863 project(No.2014AA01A701)
文摘Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput efficiency degradation, densely deployed Wi Fi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to effi ciently utilize scarce spectrum resources, by matching physical layer resources to traffi c demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in Wi Fi networks. This approach, named SFCA(Subcarrier Fine-grained Channel Access), adopts DOFDM(Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a subcarrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more fl exibility and higher frequency efficiency. The MAC layer uses a frequencytime domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA(an established access scheme)showing significant outperformance. Finally we present results for next generation 802.11 ac Wi Fi networks.
文摘介绍俄罗斯港口设计规范Standards for the design of sea channels,fairways and maneuvering areas中有关港口平面布置的设计方法,通过案例计算,分析与中国《海港总体设计规范》之间的设计差异,发现中俄规范中对港口平面布置有较大的相似之处,但对于港池宽度、停泊水域宽度和航道宽度等部分有差异,对类似实际工程应用有指导意义。
基金the auspices of the University Grants Commission(No.21595/(NET-DEC.2013),F.15-6(DEC.2013))。
文摘Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss Complex to the recent Holocene alluvium, forming three distinctive geomorphological regions across the river basin: the pediplane and upper and lower alluvial areas. Sixty cross-sections from throughout the main trunk stream were surveyed and the bankfull width, depth, cross-sectional area, and maximum depth were measured. Sediment samples from each location were studied and the flow velocity, stream power, Manning’s roughness coefficient, and shear stress were estimated. The results show that the bankfull channel cross-section area, width, width-to-depth ratio, and channel capacity increased between the beginning and middle of the river. Thereafter, the size of the river started to decrease in the lower alluvial area. This was characterized by gentle gradients, cohesive bank materials with grass cover, and channel switching. Within the lower part of the river, the channel capacity was observed to diminish as the drainage area increased. This increased the bankfull flow frequency and accelerated large floodwater losses in the floodplain via overbank flows and floodways.