Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive t...Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive techniques. The present study investigated the complex coacervation technique as a cheap technology to recover proteins from sweet whey using carboxymethylcellulose, and the coacervate used as an ingredient in the formulation of probiotic fermented milk. The nutritional properties of whey-carboxymethylcellulose coacervates (WP-CMC) were evaluated in trials with animals (rats) using casein as a reference. All these parameters—the coefficient of feed efficiency (CEA), protein digestibility-corrected amino acid score (PDCAAS), and net protein ratio (NPR), as well as weight gain—were determined to evaluate protein quality. A sensory acceptance test was applied to evaluate the sensory characteristics of the product. The complex coacervation technique recovered 86% of the protein from sweet whey. No significant (p > 0.05) differences were observed in the biological tests for both groups (WP-CMC and Casein groups) when NPR (4.98 to 5.04), digestibility (92.35 to 90.64), and CEA (0.40 to 0.42) were evaluated. Probiotic fermented milk beverage containing WP-CMC (0.78%) and guar gum (0.68%) presented good acceptability as determined by sensory evaluation. WP-CMC can be considered an ingredient with high nutritional and biological value that could be applied in probiotic fermented milk as an alternative to small producers to allocate the residual whey from cheese manufacture.展开更多
Agglomerates based on milk whey proteins and modified starch (MS) were developed for patients with dysphagia. Calcium caseinate (CaCas), whey protein isolate (WPI), concentrate (WPC) and hydrolysate (WPH) were used. T...Agglomerates based on milk whey proteins and modified starch (MS) were developed for patients with dysphagia. Calcium caseinate (CaCas), whey protein isolate (WPI), concentrate (WPC) and hydrolysate (WPH) were used. The sources were agglomerated with the MS and an increase in the porosity and viscosity of the agglomerates were observed. In all the systems evaluated, the WPI agglomerate at a concentration of 112 g/L showed a viscosity between 2122 and 5110 cP, and the agglomerates of WPC and WPH between 1115?-?2880 cP and 2600 - 6651 cP, respectively. CaCas exhibited high values in water and milk of 3200 cP and 6651 cP, respectively, and low values of 640 cP in juice. In sensory tests, the 70% WPI: 30% MS juice obtained a score 6.97, an improvement in relation to the other agglomerates, but not differing (p = 0.681) from the commercial thickener, 6.91 (p = 0.380). Based on these results, the 70% WPI: 30% MS was suggested for use in the nutritional therapy of patients with dysphagia.展开更多
文摘为研究绵羊乳与其他乳种之间营养成分及乳清蛋白组分的差异性,以山羊乳、牛乳、人乳为对照,分析不同泌乳阶段的湖羊乳、东佛里生羊乳及其杂交一代羊乳的乳清蛋白组成差异,利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electropheresis,SDS-PAGE)和非变性-PAGE(Native-PAGE)分析标志性差异蛋白。结果表明:不同品种、不同泌乳阶段绵羊乳之间以及不同乳种之间的蛋白质、脂肪、乳糖等宏量营养素含量存在显著差异(P<0.05),含量变化呈现趋势性;SDS-PAGE分析表明,绵羊乳和人乳的标志性差异蛋白为β-乳球蛋白和乳铁蛋白,绵羊乳和山羊乳的标志性差异蛋白为α-乳白蛋白,绵羊乳和牛乳的标志性差异蛋白为免疫球蛋白G重链;Native-PAGE分析表明,绵羊乳与山羊乳乳清蛋白之间存在1条差异性条带,绵羊乳与人乳、牛乳乳清蛋白之间存在3条差异性条带。
文摘Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive techniques. The present study investigated the complex coacervation technique as a cheap technology to recover proteins from sweet whey using carboxymethylcellulose, and the coacervate used as an ingredient in the formulation of probiotic fermented milk. The nutritional properties of whey-carboxymethylcellulose coacervates (WP-CMC) were evaluated in trials with animals (rats) using casein as a reference. All these parameters—the coefficient of feed efficiency (CEA), protein digestibility-corrected amino acid score (PDCAAS), and net protein ratio (NPR), as well as weight gain—were determined to evaluate protein quality. A sensory acceptance test was applied to evaluate the sensory characteristics of the product. The complex coacervation technique recovered 86% of the protein from sweet whey. No significant (p > 0.05) differences were observed in the biological tests for both groups (WP-CMC and Casein groups) when NPR (4.98 to 5.04), digestibility (92.35 to 90.64), and CEA (0.40 to 0.42) were evaluated. Probiotic fermented milk beverage containing WP-CMC (0.78%) and guar gum (0.68%) presented good acceptability as determined by sensory evaluation. WP-CMC can be considered an ingredient with high nutritional and biological value that could be applied in probiotic fermented milk as an alternative to small producers to allocate the residual whey from cheese manufacture.
文摘Agglomerates based on milk whey proteins and modified starch (MS) were developed for patients with dysphagia. Calcium caseinate (CaCas), whey protein isolate (WPI), concentrate (WPC) and hydrolysate (WPH) were used. The sources were agglomerated with the MS and an increase in the porosity and viscosity of the agglomerates were observed. In all the systems evaluated, the WPI agglomerate at a concentration of 112 g/L showed a viscosity between 2122 and 5110 cP, and the agglomerates of WPC and WPH between 1115?-?2880 cP and 2600 - 6651 cP, respectively. CaCas exhibited high values in water and milk of 3200 cP and 6651 cP, respectively, and low values of 640 cP in juice. In sensory tests, the 70% WPI: 30% MS juice obtained a score 6.97, an improvement in relation to the other agglomerates, but not differing (p = 0.681) from the commercial thickener, 6.91 (p = 0.380). Based on these results, the 70% WPI: 30% MS was suggested for use in the nutritional therapy of patients with dysphagia.