Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lin...Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.展开更多
二倍体长穗偃麦草(Thinopyrum elongatum(Host) A. Löve,2n=2x=14,EE)具有抗病性强、耐盐碱、抗旱、多花多实等优异性状。为明确引进的小麦-长穗偃麦草后代种质系的染色体遗传组成,本研究综合利用原位杂交与分子标记技术结...二倍体长穗偃麦草(Thinopyrum elongatum(Host) A. Löve,2n=2x=14,EE)具有抗病性强、耐盐碱、抗旱、多花多实等优异性状。为明确引进的小麦-长穗偃麦草后代种质系的染色体遗传组成,本研究综合利用原位杂交与分子标记技术结合田间农艺性状对其进行鉴定。结果表明,16份小麦-长穗偃麦草种质系中,L20161461、L20161462两份材料是二体异附加系,分别附加6E和7E染色体;L20160940、L20160942、L20161457、L20161459四份材料是二体异代换系,分别是4E/4D、4E/4D、1E/1D、3E/3B;与中国春相比,L20160947的千粒重增幅57.02%,达到极显著水平;在2.2%NaCl溶液处理下,L20160940的耐盐性高于中国春。本研究为这些材料在小麦遗传改良中的进一步利用奠定了基础。展开更多
基金financially supported by the National Key Research and Development Program of China(2016YFD0102001 and 2016YFD0102002)the National Natural Science Foundation of China(31771788)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences
文摘Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.
文摘二倍体长穗偃麦草(Thinopyrum elongatum(Host) A. Löve,2n=2x=14,EE)具有抗病性强、耐盐碱、抗旱、多花多实等优异性状。为明确引进的小麦-长穗偃麦草后代种质系的染色体遗传组成,本研究综合利用原位杂交与分子标记技术结合田间农艺性状对其进行鉴定。结果表明,16份小麦-长穗偃麦草种质系中,L20161461、L20161462两份材料是二体异附加系,分别附加6E和7E染色体;L20160940、L20160942、L20161457、L20161459四份材料是二体异代换系,分别是4E/4D、4E/4D、1E/1D、3E/3B;与中国春相比,L20160947的千粒重增幅57.02%,达到极显著水平;在2.2%NaCl溶液处理下,L20160940的耐盐性高于中国春。本研究为这些材料在小麦遗传改良中的进一步利用奠定了基础。