新疆塔木—卡兰古铅锌铜成矿带位于西昆仑与塔里木盆地的结合带 ,是近年来新发现的一个大型矿带。通过对含矿岩系的岩石化学、成矿元素、硫同位素、稀土元素的研究 ,并结合流体包裹体成分及H、O同位素的综合研究分析 ,认为该成矿带可分...新疆塔木—卡兰古铅锌铜成矿带位于西昆仑与塔里木盆地的结合带 ,是近年来新发现的一个大型矿带。通过对含矿岩系的岩石化学、成矿元素、硫同位素、稀土元素的研究 ,并结合流体包裹体成分及H、O同位素的综合研究分析 ,认为该成矿带可分为两种矿床类型 ,即砂砾岩型铅铜 (钴 )矿和碳酸盐岩型铅锌矿。二者为同一热卤水成矿系统的不同成矿阶段的产物 ,两类矿床可互为找矿标志。下部砂砾岩型矿床的成矿元素组合为Cu Co Pb Ag As(Ni Zn Cd) ,硫同位素组成表明富集轻硫 ,海底热液活动不强烈 ;上部碳酸盐岩型矿床的成矿元素组合为Pb Zn Cd As Ag Ba ,硫同位素分布具塔式结构 ,显示具海水还原硫和深源硫的混合来源 ,有强烈的海底热液活动。提出该成矿带的找矿目标应以上部碳酸盐岩型铅锌矿为主 ,同时应当注意下部砂砾岩型铅铜矿及其含铜砂页岩中钴的综合评价和工业利用。展开更多
A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region...A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region before and after it by this method. The results show that the stress level in the focal region just prior to the initiation of this event is approximately 6.3-8 MPa, and about 5-6.7 MPa remained in the focal region after its occurrence. The stress in the focal region decreased by roughly twenty percent after this event.展开更多
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- q...Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- quake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The sec- ond stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.展开更多
文摘新疆塔木—卡兰古铅锌铜成矿带位于西昆仑与塔里木盆地的结合带 ,是近年来新发现的一个大型矿带。通过对含矿岩系的岩石化学、成矿元素、硫同位素、稀土元素的研究 ,并结合流体包裹体成分及H、O同位素的综合研究分析 ,认为该成矿带可分为两种矿床类型 ,即砂砾岩型铅铜 (钴 )矿和碳酸盐岩型铅锌矿。二者为同一热卤水成矿系统的不同成矿阶段的产物 ,两类矿床可互为找矿标志。下部砂砾岩型矿床的成矿元素组合为Cu Co Pb Ag As(Ni Zn Cd) ,硫同位素组成表明富集轻硫 ,海底热液活动不强烈 ;上部碳酸盐岩型矿床的成矿元素组合为Pb Zn Cd As Ag Ba ,硫同位素分布具塔式结构 ,显示具海水还原硫和深源硫的混合来源 ,有强烈的海底热液活动。提出该成矿带的找矿目标应以上部碳酸盐岩型铅锌矿为主 ,同时应当注意下部砂砾岩型铅铜矿及其含铜砂页岩中钴的综合评价和工业利用。
文摘A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region before and after it by this method. The results show that the stress level in the focal region just prior to the initiation of this event is approximately 6.3-8 MPa, and about 5-6.7 MPa remained in the focal region after its occurrence. The stress in the focal region decreased by roughly twenty percent after this event.
基金Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seis- mic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.
文摘Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- quake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The sec- ond stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.