A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rive...A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rivers with wet/dry bed and complex topography. To eliminate numerical imbalance, the pressure force and bed slope terms are combined in the shallow water flow equations. For partially wet/dry elements, a treatment of the source term that preserves the well-balanced property is presented. A treatment for modeling flow over initially dry bed is presented. Numerical results show that the time step used is related to the dry bed criterion. The intercell numerical flux in the DG method is computed by the Harten-Lax-van Contact (HLLC) approximate Riemann solver. A two-dimensional slope limiting procedure is employed to prevent spurious oscillation. The robustness and accuracy of the model are demonstrated through several test cases, including dam-break flow in a channel with three bumps, laboratory dam-break tests over a triangular bump and an L-shape bend, dam-break flood in the Paute River, and the Malpasset dam-break case. Numerical results show that the model is robust and accurate to simulate dam-break flood over natural rivers with complex geometry and wet/dry beds.展开更多
One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approache...One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the s...We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the sense that it can exactly preserve a variety of physically relevant steady states.In the one-dimensional case,it can preserve different“lake-at-rest”equilibria,thermo-geostrophic equilibria,as well as general moving-water steady states.In the two-dimensional case,preserving general moving-water steady states is difficult,and to the best of our knowledge,none of existing schemes can achieve this ultimate goal.The proposed scheme can exactly preserve the x-and y-directional jets in the rotational frame as well as certain genuinely two-dimensional equilibria.Furthermore,our approach employs a path-conservative technique for discretizing nonconservative product terms,which are incorporated into the global fluxes.This allows the developed scheme to exactly preserve some of the discontinuous steady states as well.We provide a number of numerical examples to demonstrate the advantages of the proposed scheme over some alternative finitevolume methods.展开更多
In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property ...In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.展开更多
This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteri...This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteristic method.In this study,we consider a shallow water system with Coriolis effect and bottom friction stresses where this new Finite Volume Characteristics(FVC)scheme has been applied.The physical and mathematical properties of the system,including the C-property,have been well preserved.First,we developed this approach by preserving the advantages of the finite volume discretization such as conservation property and the method of characteristics,in order to avoid Riemann solvers and to enhance the accuracy without any complexity of the MUSCL reconstruction.Afterward,a discretization was applied to the bottom source term that leads to a well-balanced scheme satisfying the steady-state condition of still water.A semi-implicit treatment will also be presented in this study to avoid stability problems due to source terms.Finally,the proposed finite volume method is verified on several benchmark tests and shows good agreement with analytical solutions and experimental results;moreover,it gives a noteworthy accuracy and rapidity improvement compared to the original approaches.展开更多
A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The e...A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.展开更多
Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ...Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.展开更多
This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is com...This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for the water depth is implemented to resolve the stationary or wet/dry fronts. The bed slope source term is discretized using a central difference method to capture the static flow state over the irregular topography. Second-order accuracy in space is achieved by using the slope limited linear reconstruction method. With the proposed method, the model can avoid the partially wetting/drying cell problem and maintain the mass conservation. The proposed model is tested and verified against three theoretical benchmark tests and two experimental dam break flows. Further, the model is applied to predict the maximum water level and the flood arrival time at different gauge points for the Malpasset dam break event. The predictions agree well with the numerical results and the measurement data published in literature, which demonstrates that with the present model, a well-balanced state can be achieved and the water depth can be nonnegative when the Courant number is kept less than 0.25.展开更多
We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder sche...We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.展开更多
A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctua...A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably.展开更多
This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the inte...This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for water depth is implemented in the present model to treat the appearance of wet/dry fronts, and the friction term is solved by a semi-implicit scheme to ensure the stability of the model. The Euler method is applied to update flow variable to the new time level. The model is verified against two experimental cases and good agreements are observed between numerical results and observed data.展开更多
文摘A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rivers with wet/dry bed and complex topography. To eliminate numerical imbalance, the pressure force and bed slope terms are combined in the shallow water flow equations. For partially wet/dry elements, a treatment of the source term that preserves the well-balanced property is presented. A treatment for modeling flow over initially dry bed is presented. Numerical results show that the time step used is related to the dry bed criterion. The intercell numerical flux in the DG method is computed by the Harten-Lax-van Contact (HLLC) approximate Riemann solver. A two-dimensional slope limiting procedure is employed to prevent spurious oscillation. The robustness and accuracy of the model are demonstrated through several test cases, including dam-break flow in a channel with three bumps, laboratory dam-break tests over a triangular bump and an L-shape bend, dam-break flood in the Paute River, and the Malpasset dam-break case. Numerical results show that the model is robust and accurate to simulate dam-break flood over natural rivers with complex geometry and wet/dry beds.
基金funded by Natural Science Foundation of China (Grants No. 11172217 and 11432015)National Key Basic Research and Development Program (i.e., 973 Program) of China (Grant No. 2007CB714106)
文摘One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金supported in part by China Postdoctoral Science Foundation(No.2022M721481)The work of A.Kurganov was supported in part by NSFC grant 12171226 and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)The work of Y.Liu was supported in part by SNFS grants 200020204917 and FZEB-0-166980.
文摘We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the sense that it can exactly preserve a variety of physically relevant steady states.In the one-dimensional case,it can preserve different“lake-at-rest”equilibria,thermo-geostrophic equilibria,as well as general moving-water steady states.In the two-dimensional case,preserving general moving-water steady states is difficult,and to the best of our knowledge,none of existing schemes can achieve this ultimate goal.The proposed scheme can exactly preserve the x-and y-directional jets in the rotational frame as well as certain genuinely two-dimensional equilibria.Furthermore,our approach employs a path-conservative technique for discretizing nonconservative product terms,which are incorporated into the global fluxes.This allows the developed scheme to exactly preserve some of the discontinuous steady states as well.We provide a number of numerical examples to demonstrate the advantages of the proposed scheme over some alternative finitevolume methods.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA072)supported by the Natural Science Foundation of China(Grant No.11771228)+1 种基金supported by the Qinglan Project of Jiangsu Province,the XJTLU research enhancement fund(No.REF-18-01-04)the Key Programme Special Fund(KSF)in XJTLU(Nos.KSF-E-32 and KSF-E-21).
文摘In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.
基金supported by the HPC Project Alkhwarizmi department,MSDA-UM6P.
文摘This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteristic method.In this study,we consider a shallow water system with Coriolis effect and bottom friction stresses where this new Finite Volume Characteristics(FVC)scheme has been applied.The physical and mathematical properties of the system,including the C-property,have been well preserved.First,we developed this approach by preserving the advantages of the finite volume discretization such as conservation property and the method of characteristics,in order to avoid Riemann solvers and to enhance the accuracy without any complexity of the MUSCL reconstruction.Afterward,a discretization was applied to the bottom source term that leads to a well-balanced scheme satisfying the steady-state condition of still water.A semi-implicit treatment will also be presented in this study to avoid stability problems due to source terms.Finally,the proposed finite volume method is verified on several benchmark tests and shows good agreement with analytical solutions and experimental results;moreover,it gives a noteworthy accuracy and rapidity improvement compared to the original approaches.
基金the National Natural Science Foundation of China(11901555,11871448,12001009).
文摘A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.
基金supported by the Spanish MICINN project MTM2013-43745-R and MTM2017-86459-Rthe Xunta de Galicia+1 种基金the FEDER under research project ED431C 2017/60-014supported by PRODEP project UAM-PTC-669
文摘Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.
基金Project supported by Natural Science Foundation of Zhejiang Province(Grant No.LR16E090001)the Research Funding of Shenzhen City(Grant No.JCYJ20160425164642646)the Zhejiang Province Science and Technology Research Funding(Grant No.2015C03015)
文摘This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for the water depth is implemented to resolve the stationary or wet/dry fronts. The bed slope source term is discretized using a central difference method to capture the static flow state over the irregular topography. Second-order accuracy in space is achieved by using the slope limited linear reconstruction method. With the proposed method, the model can avoid the partially wetting/drying cell problem and maintain the mass conservation. The proposed model is tested and verified against three theoretical benchmark tests and two experimental dam break flows. Further, the model is applied to predict the maximum water level and the flood arrival time at different gauge points for the Malpasset dam break event. The predictions agree well with the numerical results and the measurement data published in literature, which demonstrates that with the present model, a well-balanced state can be achieved and the water depth can be nonnegative when the Courant number is kept less than 0.25.
基金NSFC grant(No.11771201)by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)。
文摘We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.
基金funded by Natural Science Foundation of China(Grants Nos.51279144 and 11432015)
文摘A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably.
文摘This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for water depth is implemented in the present model to treat the appearance of wet/dry fronts, and the friction term is solved by a semi-implicit scheme to ensure the stability of the model. The Euler method is applied to update flow variable to the new time level. The model is verified against two experimental cases and good agreements are observed between numerical results and observed data.