The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron m...The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was discussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding preheating current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.展开更多
The failure mechanism of DP590-22MnB5(quenched) and DP590-DP590 spot-welding joints is studied through lap-shearing experiments,metallographic observation and three-dimensional finite element simulation.Both joints cr...The failure mechanism of DP590-22MnB5(quenched) and DP590-DP590 spot-welding joints is studied through lap-shearing experiments,metallographic observation and three-dimensional finite element simulation.Both joints cracked on the DP590 steel,but the tensile shear strength of the DP590-22MnB5(quenched) joint is greater than that of the DP590-DP590 joint.A finite element model for the lap-shearing experiment is established according to the mechanical properties of DP590 and 22MnB5(quenched) steels and the metallographic analysis of welding spots.The simulation results show that the difference in the axis rotation of the two welding spots causes different distributions of stress and strain,which shifts shear loading condition to opening loading condition.Due to larger axis rotation angle of the DP590-DP590 joint,the stress concentration occurs at the middle of the nugget circumference,and it results in lower tensile shear strength of the DP590-DP590 joint.展开更多
Resistance .spot u,e/ded magnesium alloy joints can fail in two markedly different failure modes (interfiscialfitilure and button pullout failure) under tensile shear loading conditions. For button pullottt failure,...Resistance .spot u,e/ded magnesium alloy joints can fail in two markedly different failure modes (interfiscialfitilure and button pullout failure) under tensile shear loading conditions. For button pullottt failure, the crack first propagates along cellular dendritic structure of the nugget circumference, and then passes through heat-affected zone (HAZ) and base metal in sequence. The tensile shear load has smaller values under the interracial failure occurring in a small weld nugget as compared to the button pullout failure appearing in a large weld nugget. The tensile shear load increases with the increasing nugget diameter for expulsion free joints. However, for joints which experienced expulsion, the tensile shear load decreases in spite of nugget diameter increasing. Under the equivalent nugget diameter (5. g mm), the tensile shear load of joints with 9 × 10^-4 g KBF4 addition was increased by around 20% as compared to that of joints without KBF4 addition.展开更多
In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear pro...In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.展开更多
Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Resu...Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.展开更多
文摘The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was discussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding preheating current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.
文摘The failure mechanism of DP590-22MnB5(quenched) and DP590-DP590 spot-welding joints is studied through lap-shearing experiments,metallographic observation and three-dimensional finite element simulation.Both joints cracked on the DP590 steel,but the tensile shear strength of the DP590-22MnB5(quenched) joint is greater than that of the DP590-DP590 joint.A finite element model for the lap-shearing experiment is established according to the mechanical properties of DP590 and 22MnB5(quenched) steels and the metallographic analysis of welding spots.The simulation results show that the difference in the axis rotation of the two welding spots causes different distributions of stress and strain,which shifts shear loading condition to opening loading condition.Due to larger axis rotation angle of the DP590-DP590 joint,the stress concentration occurs at the middle of the nugget circumference,and it results in lower tensile shear strength of the DP590-DP590 joint.
文摘Resistance .spot u,e/ded magnesium alloy joints can fail in two markedly different failure modes (interfiscialfitilure and button pullout failure) under tensile shear loading conditions. For button pullottt failure, the crack first propagates along cellular dendritic structure of the nugget circumference, and then passes through heat-affected zone (HAZ) and base metal in sequence. The tensile shear load has smaller values under the interracial failure occurring in a small weld nugget as compared to the button pullout failure appearing in a large weld nugget. The tensile shear load increases with the increasing nugget diameter for expulsion free joints. However, for joints which experienced expulsion, the tensile shear load decreases in spite of nugget diameter increasing. Under the equivalent nugget diameter (5. g mm), the tensile shear load of joints with 9 × 10^-4 g KBF4 addition was increased by around 20% as compared to that of joints without KBF4 addition.
基金supported by the National Natural Science Foundation of China (No.51204111)
文摘In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.
基金This work is supported by the National Natural Science Foundation of China (No. 51204111 ), the Natural Science Foundation of Liaoning Province ( No. 2013024004 and No. 2014024008).
文摘Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.