TiC/TisSi3 composites were fabricated on Ti-5A1-2.5Sn substrates by gas tungsten arc welding (GTAW). Identification of the phases was performed using X-ray diffraction (XRD). The microstructures were analyzed usin...TiC/TisSi3 composites were fabricated on Ti-5A1-2.5Sn substrates by gas tungsten arc welding (GTAW). Identification of the phases was performed using X-ray diffraction (XRD). The microstructures were analyzed using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectrometry (EDS) and optical microscopy (OM). The Vickers hardness was measured with a micro-hardness tester. The TiC/TisSi3 composites were obtained in a double-layer track, and the Vickers hardness of the track increased by two to three times compared with the Ti-5A1-2.5Sn substrate.展开更多
To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investig...To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investigated. Experimental results indicated that Ti and Sr are excellent modifiers, which improve the microstructure of the AA4043 welding wire and enhance the mechanical properties of the AA6082 weld. It was found that the combinative addition of Ti and Sr can effectively modify both the α(Al) dendrites and eutectic Si phases compared with individual addition of Ti or Sr. In addition, Ti and/or Sr also changed the microstructure of the AA6082 weld. The tensile strength of the AA6082 weld reached the maximum value when 0.08% Ti and 0.025% Sr were added simultaneously. These results indicate that the combinative addition of Ti and Sr can be an effective composite modifier.展开更多
基金financially supported by the Foundation of Education Department of Guangdong Province,China (No. 2010A090200034)
文摘TiC/TisSi3 composites were fabricated on Ti-5A1-2.5Sn substrates by gas tungsten arc welding (GTAW). Identification of the phases was performed using X-ray diffraction (XRD). The microstructures were analyzed using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectrometry (EDS) and optical microscopy (OM). The Vickers hardness was measured with a micro-hardness tester. The TiC/TisSi3 composites were obtained in a double-layer track, and the Vickers hardness of the track increased by two to three times compared with the Ti-5A1-2.5Sn substrate.
基金Project(2015A12225)supported by the Key Technical Innovation Project Foundation of Jinhua City,ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China
文摘To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investigated. Experimental results indicated that Ti and Sr are excellent modifiers, which improve the microstructure of the AA4043 welding wire and enhance the mechanical properties of the AA6082 weld. It was found that the combinative addition of Ti and Sr can effectively modify both the α(Al) dendrites and eutectic Si phases compared with individual addition of Ti or Sr. In addition, Ti and/or Sr also changed the microstructure of the AA6082 weld. The tensile strength of the AA6082 weld reached the maximum value when 0.08% Ti and 0.025% Sr were added simultaneously. These results indicate that the combinative addition of Ti and Sr can be an effective composite modifier.