A new kind of plasma technology with both high deposition rate and low dilution ratio was developed under the calculation and analysis of the arc flame characteristics of plasma arc,the kinematics behavior of powder a...A new kind of plasma technology with both high deposition rate and low dilution ratio was developed under the calculation and analysis of the arc flame characteristics of plasma arc,the kinematics behavior of powder and powder's heating in the arc. Compared with normal plasma surfacing method, the idea using constricting nozzle with small orifice diameter, long plasma arc and increasing the distance from meeting point of the two beams of powder to workpiece, to achieve the goals of high deposition rate and low dilution ratio, was put forward here. In order to prove this idea, a set of experimental system was built up and obtained satisfied results including high deposition rate(more than 25 kg/h )and low dilution ratio(less than 5%). The success of this study offers a promising prospect for developing the powder plasma surface welding in China and may open a way to improve this technology further in efficiency and quality.展开更多
随着全球制造业竞争的日益激烈,我国提出了“中国制造2025”制造强国战略,其重点发展的十大领域中,与焊接技术密切相关的就高达八个,不仅极大地推动了焊接技术的革新发展,而且对焊接效率和质量均提出了更高的要求。由于熔化极气体保护焊...随着全球制造业竞争的日益激烈,我国提出了“中国制造2025”制造强国战略,其重点发展的十大领域中,与焊接技术密切相关的就高达八个,不仅极大地推动了焊接技术的革新发展,而且对焊接效率和质量均提出了更高的要求。由于熔化极气体保护焊(Gas metal arc welding,GMAW)易于实现自动化焊接,具有生产效率高、焊接质量好及位置适应性好等优点,所以广泛应用于机械制造业中。实现高效GMAW的主要途径有提高焊接速度以及焊接熔敷率。针对以上两种途径,国内外焊接工作者在双丝GMAW的基础上,引入了第三根甚至多根焊丝,研发了各种多丝GMAW工艺。本文针对国内外研发的各类多丝GMAW工艺进行了分析,重点介绍了多丝GMAW工艺的焊接原理、工艺特点及其应用,通过上述分析对各类多丝GMAW工艺进行归纳总结,并进一步展望了多丝焊接的发展方向,即多丝GMAW工艺亟需在电弧物理理论、设备开发和新焊材研发等方面展开深入的研究工作。展开更多
A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. A...A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MlG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect are. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.展开更多
In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. To...In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. Too high or low deposition rate compromises the integrity of weld. This study was carried out with the aim of providing an approach for producing better weldments by optimizing and predicting deposition rate of low carbon steel using Response Surface Methodology (RSM). 30 sets of experiments were done, adopting the central composite experimental design. The tungsten inert gas welding equipment was used to produce the welded joints. Argon gas was supplied to the welding process to shield the weld from atmospheric interference. Mild steel coupons measuring 60 × 40 × 10 mm was used for the experiments. The results obtained show that the voltage and current have very strong influence on the deposition rate. The models developed possess a variance inflation factor of 1. And P-value is less than 0.05, indicating that the model is significant. The models also possessed a high goodness of fit with R2 (Coefficient of determination) values of 91%. The model produced numerically obtained optimal solution of current of 160.00 Amp, voltage of 20 volts and a gas flow rate of 17 L/min produces a welded material having deposition rate of 0.4637 kg/hr. This solution was selected by design expert as the optimal solution with a desirability value of 98.8%. A weld simulation using the optimum value obtained produced a weld with good quality.展开更多
新型低能量焊接技术(New Low Energy Welding Technology,简称NLE)是一种新型焊接方法,采用推拉送丝方式完成熔滴过渡,焊接过程无飞溅并能有效降低焊接热输入。NLE焊接系统通过电流输出和焊丝运动相互匹配,两者协同工作实现稳定焊接。...新型低能量焊接技术(New Low Energy Welding Technology,简称NLE)是一种新型焊接方法,采用推拉送丝方式完成熔滴过渡,焊接过程无飞溅并能有效降低焊接热输入。NLE焊接系统通过电流输出和焊丝运动相互匹配,两者协同工作实现稳定焊接。通过焊接工艺试验深入研究燃弧峰值电流I_1、保持时间T_1、送丝速度v_1、焊丝送进延时时间T_4、焊丝回抽速度v_2及焊丝回抽延时时间T_5等控制参数对焊丝熔敷速度的影响规律。结果表明:随着I_1、T_1、v_1、v_2和T_5的增大,焊丝熔敷速度增大,并且I_1和T_1对焊丝熔敷速度的影响较显著,而v2和T_5对焊丝熔敷速度的影响不明显,随着T_4的增大,焊丝熔敷速度逐渐减小,适当调节焊接控制参数可以有效控制焊丝熔敷速度。展开更多
The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum ...The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.展开更多
文摘A new kind of plasma technology with both high deposition rate and low dilution ratio was developed under the calculation and analysis of the arc flame characteristics of plasma arc,the kinematics behavior of powder and powder's heating in the arc. Compared with normal plasma surfacing method, the idea using constricting nozzle with small orifice diameter, long plasma arc and increasing the distance from meeting point of the two beams of powder to workpiece, to achieve the goals of high deposition rate and low dilution ratio, was put forward here. In order to prove this idea, a set of experimental system was built up and obtained satisfied results including high deposition rate(more than 25 kg/h )and low dilution ratio(less than 5%). The success of this study offers a promising prospect for developing the powder plasma surface welding in China and may open a way to improve this technology further in efficiency and quality.
文摘随着全球制造业竞争的日益激烈,我国提出了“中国制造2025”制造强国战略,其重点发展的十大领域中,与焊接技术密切相关的就高达八个,不仅极大地推动了焊接技术的革新发展,而且对焊接效率和质量均提出了更高的要求。由于熔化极气体保护焊(Gas metal arc welding,GMAW)易于实现自动化焊接,具有生产效率高、焊接质量好及位置适应性好等优点,所以广泛应用于机械制造业中。实现高效GMAW的主要途径有提高焊接速度以及焊接熔敷率。针对以上两种途径,国内外焊接工作者在双丝GMAW的基础上,引入了第三根甚至多根焊丝,研发了各种多丝GMAW工艺。本文针对国内外研发的各类多丝GMAW工艺进行了分析,重点介绍了多丝GMAW工艺的焊接原理、工艺特点及其应用,通过上述分析对各类多丝GMAW工艺进行归纳总结,并进一步展望了多丝焊接的发展方向,即多丝GMAW工艺亟需在电弧物理理论、设备开发和新焊材研发等方面展开深入的研究工作。
文摘A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MlG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect are. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.
文摘In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. Too high or low deposition rate compromises the integrity of weld. This study was carried out with the aim of providing an approach for producing better weldments by optimizing and predicting deposition rate of low carbon steel using Response Surface Methodology (RSM). 30 sets of experiments were done, adopting the central composite experimental design. The tungsten inert gas welding equipment was used to produce the welded joints. Argon gas was supplied to the welding process to shield the weld from atmospheric interference. Mild steel coupons measuring 60 × 40 × 10 mm was used for the experiments. The results obtained show that the voltage and current have very strong influence on the deposition rate. The models developed possess a variance inflation factor of 1. And P-value is less than 0.05, indicating that the model is significant. The models also possessed a high goodness of fit with R2 (Coefficient of determination) values of 91%. The model produced numerically obtained optimal solution of current of 160.00 Amp, voltage of 20 volts and a gas flow rate of 17 L/min produces a welded material having deposition rate of 0.4637 kg/hr. This solution was selected by design expert as the optimal solution with a desirability value of 98.8%. A weld simulation using the optimum value obtained produced a weld with good quality.
文摘新型低能量焊接技术(New Low Energy Welding Technology,简称NLE)是一种新型焊接方法,采用推拉送丝方式完成熔滴过渡,焊接过程无飞溅并能有效降低焊接热输入。NLE焊接系统通过电流输出和焊丝运动相互匹配,两者协同工作实现稳定焊接。通过焊接工艺试验深入研究燃弧峰值电流I_1、保持时间T_1、送丝速度v_1、焊丝送进延时时间T_4、焊丝回抽速度v_2及焊丝回抽延时时间T_5等控制参数对焊丝熔敷速度的影响规律。结果表明:随着I_1、T_1、v_1、v_2和T_5的增大,焊丝熔敷速度增大,并且I_1和T_1对焊丝熔敷速度的影响较显著,而v2和T_5对焊丝熔敷速度的影响不明显,随着T_4的增大,焊丝熔敷速度逐渐减小,适当调节焊接控制参数可以有效控制焊丝熔敷速度。
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.